PHENOTYPIC AND MOLECULAR IDENTIFICATION OF NON-MUTANS STREPTOCOCCI ORGANISMS RECOVERED ON Mitis-Salivarius Bacitracin Agar FROM CARIES ACTIVE SUBJECTS

KHALID IMRAN1,2* AND R. SENTHILKUMAR1,2

Indian Academy Degree College, Department of Biotechnology, Centre for Research & PG Studies, Bangalore- 560 043, India1.
Research and Development Center, Bharathiar University, Coimbatore- 641 046, Tamil Nadu, India.2

ABSTRACT

Dental caries is one of the most common oral infectious disease affecting humans worldwide and Mutans Streptococci (MS) have been implicated as major cariogenic bacteria. The “low-pH non-Mutans Streptococci Organisms (non-MSO) have been identified as atypical strains in caries plaque samples, in the absence of MS group. The non-MSO usually competes with MS group for colonizing on the tooth surface. The objective of the present study was to isolate and identify the non-MSO recovered on Mitis-Salivarius Bacitracin (MSB) agar from caries active subjects. Dental plaque samples were collected from caries active subjects and cultured on MSB agar. The bacteria grown on MSB agar were subjected to biochemical tests and 16S rDNA identification. Among 38 subjects, 4 subjects were positive for non-MSO, which were identified as Streptococcus anginosus (03) and Streptococcus sanguinis (01). The detection of non-MSO in caries active subjects, confirmed their involvement in the infection which may support “Non-specific plaque hypothesis” of caries formation.

KEY WORDS: Dental caries, Mitis-Salivarius Bacitracin Agar, Biochemical test, Non-mutans streptococci organism, 16S rDNA
INTRODUCTION

Dental caries is a ubiquitous and oldest prevailing disease affecting all age groups and segments of mankind¹, ². There are three main schools of thought on the role of plaque bacteria in the etiology of caries (i) the specific plaque hypothesis, (ii) the nonspecific plaque hypothesis, and (iii) the ecological plaque hypothesis³, ⁴, ⁵, ⁶. The specific plaque hypothesis proposed that only a few specific species comprising the resident plaque microflora are actively involved in the disease³, ⁵. In contrast, the "Non-Specific Plaque Hypothesis" which maintains that caries results due to the overall activity of total plaque microflora and heterogeneous group of microbes play the role in the disease⁶, ⁷. The ecological plaque hypothesis states that there is a shift in the balance of cariogenic bacteria from neutral pH to low pH due to frequency of consumption of fermentable carbohydrates resulting in enrichment of acidogenic and aciduric species in plaque⁸. The oral streptococci are classified into four species groups namely the anginosus, mitis, mutans and salivarius⁹. The classification is based on chemotaxonomic and genotypic data, especially DNA-DNA base pairing and 16S rRNA gene sequence analysis. Among the oral streptococci group, Mutans Streptococci (MS) are constantly associated with dental caries which comprises of seven species namely Streptococcus mutans, Streptococcus sobrinus, Streptococcus downei, Streptococcus cricetus, Streptococcus rattus, Streptococcus ferus, and Streptococcus macacae¹⁰, ¹¹, ¹². S. mutans and S. sobrinus are strongly associated as they are frequently isolated from caries subjects¹³, ¹⁴. MS have received extensive attention as etiological agents responsible for dental caries, though they don’t always constitute the major proportion of microflora in primary carious lesions and only increase in their number as the caries progress¹⁵. The pioneering work of Clarke¹⁶ revealed that the caries sometimes develops in the absence of any detectable S. mutans. These findings suggest that the other oral species might produce similar amounts of acids which cause the disease. Few investigators have reported that it is probably non-Mutans Streptococci Organisms (non-MSO) and Actinomyces that contribute in the early stages of acidification, demineralization of enamel which results in aiding the MS and other oral bacteria to move in for capitalize the environment¹⁷. Mitis-Salivarius agar is commonly used for selective isolation of oral streptococci from plaque samples¹⁸, ¹⁹ and was modified to MSB agar by Gold et al., ²⁰ for the recovery of S. mutans with maximum inhibition of the balance of the streptococcal flora normally encountered on the Mitis-Salivarius agar. Yoo et al., ²¹ were probably first to report the species level identification of non-MSO recovered on MSB agar and highlighted the scarcity of information with reference to non-MSO. These investigators have also outlined the importance of identification of non-MSO on MSB agar which will help in improving this medium. The study to investigate the dynamics of non-MSO in caries subjects is important for treatment, prevention strategies and in developing anti-caries agents focused towards mixed microbial species. In this background, our investigation was carried out with the following objective to isolate and identify the non-MSO recovered on MSB agar from caries active subjects.

MATERIALS AND METHODS

STUDY POPULATION

The present study was approved by the institutional ethical committee at M.S. Ramaiah Dental College, affiliated to Rajiv Gandhi University of Health Sciences, Bangalore. The study comprised of 38 cases, which includes 19 males and 19 females respectively, ranging in the age from 35 to 44 years as per the WHO guidelines ²². The nature of the work followed in the present study was fully explained to all participants and the study was conducted with formal written informed consent. The subjects were screened using a pathfinder survey and who volunteered in the study was interviewed using a questionnaire. Qualified subjects had no chronic disease or had not received antibiotic therapy for atleast 6 weeks ²³. The clinical examination was conducted in duplicate by calibrated dentist to evaluate intra-examiner reliability.
DENTAL PLAQUE COLLECTION
Sterile tongue depressor was used to avoid contamination from other mouth parts and to aid a better vision of carious lesions. Plaque sampling sites varied depending on the condition of the oral cavity. The plaque samples were collected from carious lesions sites with sterile wooden toothpicks. The tips of the toothpicks were aseptically cutoff and immediately transferred into 1ml of sterile phosphate buffer saline and stored at 4°C

BACTERIAL ISOLATION FROM DENTAL PLAQUES
The Mitis-Salivarius agar (Himedia) was modified to MSB agar (Gold et al.,) by adding 20% sucrose (Himedia) and 0.2 units/ml bacitracin (Himedia). The samples were vortexed and plated on MSB agar followed by anaerobic incubation for 37ºC at 48h.

MORPHOLOGICAL IDENTIFICATION
After incubation period, the colonies of MS and non-MSO were selected based on colony morphology. From each sample plate, suspected colonies of MS and non-MSO were picked up and transferred to 2 ml of Brain Heart Infusion (BHI) broth (Himedia) and incubated at 37ºC for 18h. The Gram’s nature and morphology of the bacteria were determined by Gram’s staining.

BIOTYPING
Colonies were further confirmed by biochemical tests for fermentation of mannitol, sorbitol, melibiose, raffinose and hydrolysis of arginine. Sterile carbohydrate discs (Himedia) were aspexially added to phenol red broth base (Himedia) which was used as a basal medium for the fermentation of carbohydrates and for arginine hydrolysis, arginine dihydrolase broth (Himedia) was used. The tubes were inoculated with overnight culture of test organisms and incubated at 37ºC for 48h. A positive reaction for fermentation was indicated by color change from red to yellow while arginine hydrolysis was deducted by the color change from purple to yellow and then back to purple. The biochemical results were validated with reference strains and repeated in order to confirm reproducibility and reliability. The bacteria which were remained unidentified by biochemical scheme proposed by Shklaire and Keene were considered as non-MSO. After identification, the cultures were maintained at -20°C in 10% glycerol BHI broth (Himedia).

DNA EXTRACTION AND PURIFICATION
DNA was extracted and purified according to Spolidorio et al., and Bert et al., with some modifications. Single colony forming units of each strain were inoculated in BHI broth and incubated at 37ºC for 18h. The cells were pelleted down and washed twice with TE buffer (50 mM Tris, 1 mM EDTA, pH 8)[Sigma Aldrich], centrifuged and resuspended in buffer containing 10 mM Tris-HCl, 50 mM EDTA (Sigma Aldrich), and 25% sucrose (Himedia). DNA was extracted from bacterial cells by incubation with 10 mg/ml lysozyme (Himedia) and 100 µg/ml RNAase (Sigma Aldrich) for 30 minutes at 60°C followed by incubation with 50µl of 10 mg/ml proteinase K (Himedia) and 50µl of 10% sarkosyl (Sigma Aldrich) at 37°C for 2h and then for 30 min at 68°C. After enzymatic treatment, the pellet was treated twice with phenol:chloroform:isoamyl alcohol (25:24:1) [Qualigens]. DNA was precipitated with double volume of ice cold ethanol (Himedia) and stored at -20°C for 30 minutes. The vials were centrifuged and the pellet was washed with 70% alcohol. The pellet was air dried and dissolved in TE buffer and stored at -20°C until use. The DNA was further purified using column purification kit (Qiagen).

16S rDNA PCR AMPLIFICATION AND IDENTIFICATION
PCR amplification for 16S rDNA gene was done with primers F- 5´AGT TGA TCC TGG CTC AG 3´ and R- 5´ACC TTG TTA CGA CTT 3´. The PCR (PerkinElmer 2009) conditions were initial denaturation at 94°C for 2 minutes followed by denaturation at 94°C for 30 seconds. Annealing at 58°C for 30 seconds and extension at 72°C for 90 seconds and
final extension for 72°C for 2 minutes. This amplification was repeated for 30 cycles. The PCR product was run in 1% agarose gel, 1.5 Kb band was then purified with Gel elution Kit, ARK-07(Aristogene). The product was subjected to 16S rDNA sequencing (ABI 3730xl 96 well capillary sequencer, Applied Biosystem). The resultant sequences were subjected to BLAST search in relevant database and the species were identified. The sequences were submitted to NCBI database to obtain GenBank accession numbers.

RESULTS

Among the 38 clinical isolates from caries active subjects, 4 (10.52%) of them were identified as non-MSO by 16S rDNA sequencing. Of these four isolates, three were *S. anginosus* and one was *S. sanguinis*. The four non-MSO showed typical MS colony morphology (mulberry shaped) on MSB agar. Fig 1. presents the proportion of non-MSO (10.52%) and MS (89.47%) recovered on MSB agar. The bacteria, which were remained unidentified by biochemical scheme is presented in table 1.

![Proportion of non-MSO and MS recovered on MSB agar](image)

Table 1

<table>
<thead>
<tr>
<th>Strain</th>
<th>Mannitol</th>
<th>Sorbitol</th>
<th>Raffinose</th>
<th>Melibiose</th>
<th>Arginine</th>
<th>Mannitol + 20 μl Bacitracin</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>P4</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>P8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>P33</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

The GenBank accession numbers provided by NCBI and identification of non-MSO isolates at species level by 16S rDNA sequencing is presented in table 2.

Table 2

<table>
<thead>
<tr>
<th>Strain</th>
<th>GenBank Accession Number</th>
<th>16S rDNA sequencing identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>JX678670</td>
<td>S. anginosus</td>
</tr>
<tr>
<td>P4</td>
<td>JX678671</td>
<td>S. anginosus</td>
</tr>
<tr>
<td>P8</td>
<td>JX678675</td>
<td>S. anginosus</td>
</tr>
<tr>
<td>P33</td>
<td>JX678700</td>
<td>S. sanguinis</td>
</tr>
</tbody>
</table>

This article can be downloaded from www.ijpbs.net
DISCUSSION

Among 38 clinical isolates from caries active subjects, 4(10.52%) were detected to be non-MSO, these findings are in accordance to Russell 17. The non-MSO was unable to be differentiated from MS based on colony morphology. The results from the present study indicate that the MSB agar could not comprehensively inhibit non-MSO and was inadequate to differentiate the oral streptococci species. Our study is in agreement with Russell 17 in making a Type II error, failing to detect the true bacteria, based on morphology. The biotyping results showed that there were different phenotypes of S. anginosus in study population and similar result was reported by Yoo et al., 21. The possible explanation for detecting S. sanguinis is that they usually compete with the MS group for colonizing on the surface of the tooth 30. In addition to that Takahashi 15 has reported, MS are inhibited by hypothiocyanite which is produced by the metabolic activity of S. sanguinis. Yamaguchi et al., 31 has reported that S. sanguinis, has low cariogenicity and aids in aggregation of oral bacteria and maturation of dental plaque. A previous study has reported that S. anginosus were able to grow on MS-SOB medium which contains multiple antibiotic namely Bacitracin, Aztreonam and Fosfomycin 32 and in an another study Yoo et al., 21 reported 8 strains of S. anginosus and one strain of S. sanguinis were able to grow on MSB agar. These findings clearly indicate that both species have gained resistance over time. There are sufficient studies on S. anginosus involved in carcinogenesis, 33, 34 but there is a scarcity of information on S. anginosus involvement in caries. Our study indicates that both S. sanguinis and S. anginosus have acquired resistance to both 20% sucrose and 0.2 units/ml bacitracin, and was able to grow on MSB agar in accordance previous findings 21.

CONCLUSION

The study concludes by stating that MSB agar does not suppress sufficient non-MSO. Presence of non-MSO in the caries active subjects confirmed their involvement in caries infection which may support “Non-specific plaque hypothesis” of caries formation. The non-MSO usually not preferring MSB agar might have gained antibiotic resistance and behaved like MS. This behavior of non-MSO might have caused difficulty in identifying them on MSB agar but warranted molecular characterization. All the four isolates were identified as non-MSO by 16S rDNA sequencing study.

REFERENCES

29. Franco e Franco TC, Amoroso P, Marin JM, de Avila FA., Detection

