Indexed in Chemical Abstract Services (USA), Index copernicus, Ulrichs Directory of Periodicals, Google scholar, CABI, DOAJ, PSOAR, EBSCO, Open J gate, Proquest, SCOPUS, EMBASE, etc.

The “International Journal of Pharma and Bio Sciences” (IJPBS) is an international journal in English published quarterly. The aim of IJPBS is to publish peer reviewed research and review articles rapidly without delay in the developing field of pharmaceutical and biological sciences.

Indexed in Elsevier Bibliographic Database (Scopus and EMBASE)

SCImago Journal Rank 0.288
Impact factor 2.958*
Elsevier Bibliographic databases (Scopus & Embase)

SNIP value – 0.77

SJR - 0.288

IPP - 0.479

*SNIP – Source normalised impact per paper
SJR – SCImago Journal rank
IPP – Impact per publication
Source – www.journalmetrics.com
(Powered by Scopus (ELSEVIER)*

<table>
<thead>
<tr>
<th>Indicator</th>
<th>2006-2013</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJR</td>
<td></td>
<td>0.29</td>
</tr>
<tr>
<td>Cites per doc</td>
<td></td>
<td>0.51</td>
</tr>
<tr>
<td>Total cites</td>
<td></td>
<td>852</td>
</tr>
</tbody>
</table>

*Instruction to Authors visit www.ijpbs.net
For any Queries, visit “contact” of www.ijpbs.net
TRANSFORMATION STUDIES OF CAFFEINE DEGRADING PLASMID FROM BREVIBACTERIUM SPECIES

SUMITHA.J*

Research and Development Centre, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
PostGraduate Department of Microbiology, JBAS College for Women, Teynampet, Chennai-600 018, Tamil Nadu, India

ABSTRACT

The study of caffeine degrading plasmid from Brevibacterium, isolated and maintained in our laboratory from the coffee samples obtained from West Karnataka was undertaken. A plasmid of about 2000 bp was isolated from Brevibacterium. The isolated plasmid was used to transform Escherichia coli DH5α and the transformed colonies were inoculated in 1 to 10 g/L of caffeine containing minimal media to investigate whether the plasmid was involved in biodegradation of caffeine. It was observed that the plasmid biodegraded caffeine up to 8 g/L in minimal media, whereas non-transformed colonies could tolerate only up to 1 g/L caffeine. Growth curves obtained in the minimal media showed that transformed cells of Escherichia coli DH5α have greater ability to tolerate and degrade caffeine as compared to non-transformed cells.

KEYWORDS: Gram positive Bacteria, caffeine degrading plasmid, transformation, Escherichia coli DH5α.
INTRODUCTION

Caffeine (1, 3, 7-trimethylxanthine) is a purine alkaloid naturally occurring in coffee and cocoa beans, cola nuts, and tea leaves. Excessive consumption of caffeine through beverages results in a number of health problems like adrenal stimulation, irregular muscular activity, cardiac arrhythmias, osteoporosis and increased heart output (Schuh et al. 1997). Excess caffeine is reported to cause mutation, inhibition of DNA repairs and inhibition of adenosine monophosphodiesterase (Blecher et al. 1977). Due to the known adverse effects of caffeine in the widely consumed beverages like coffee and tea, a caffeine free product is desirable. Apart from health effects, caffeine degradation is important from environment point of view also. Disposal of coffee processing industrial waste into lakes render drinking water non-potable (Buerge et al. 2003) and studies on removal of many toxic ions from coffee spent is attempted. The presence of caffeine in soil also affects soil fertility as it inhibits seed germination and growth of seedlings (Friedman et al. 1983; Batish et al. 2008). Though the coffee pulp and husk are rich in carbohydrates and proteins, the presence of antinutritional factors such as caffeine, polyphenols, and tannins restricted its use as animal feed (Mazzafera et al. 1994). The Conventional methods of decaffeination usually involve the use of decaffeinating agents such as methylene chloride, ethylacetate, charcoal, triglycerides and supercritical CO₂. These conventional methods are expensive, toxic and non-specific to caffeine. In this regard biodecaffeination using microbes has been considered more suitable than currently used chemical methods. The Gram positive bacteria, Brevibacterium, isolated in our laboratory were found to be capable of degrading high concentration of caffeine in our previous investigations. The present study was undertaken to check whether the plasmid isolated from the isolate can bring about transformation of Escherichia coli DH5α strain in such a way that transformed bacteria can grow better on caffeine containing media.

MATERIALS AND METHODS

Transformation Experiment

Method of Mandel and Higa and Cohen et al with minor modification was used for transformation experiments. E. coli DH5α obtained from Bangalore Genei was streaked and maintained on LB (Luria Bertini) agar plate. Then a single colony was inoculated into 5 mL of LB broth and was incubated at 37°C overnight on shaker incubator maintained at 120 rpm. When the OD of the broth reached 0.6, 1 mL of cooled culture was centrifuged at 5000 at 4°C. Supernatant was decanted and the cell pellet was resuspended in autoclaved 0.1 M CaCl₂ by gently inverting the eppendorf tubes. Re-suspended cells were kept on ice for 10 min and centrifuged at 5000 rpm for 10 min. Supernatant was decanted, 0.5 mL of 0.1 M CaCl₂ was added to the cell pellet and re-suspended by inverting the eppendorf tube gently. The competent cells obtained were added to the vial containing isolated plasmid and the tube was inverted gently several times to mix the plasmid with competent cells. The tube containing competent cells with plasmid is kept on ice bath for 20 min and then transferred to a water bath maintained at 42°C for 90 sec. 500 µL of LB broth was added to the tube, mixed gently again and kept in an incubator at 37°C for 1 h (Sneha Nayak et al., 2012)

Screening of Transformed and Non-transformed E. coli DH5α for caffeine degradation

LB agar plates and minimal media plates containing different concentration of caffeine (1-10 g/L) and appropriate controls were maintained through the study. 10 µL of transformed and non transformed E. coli DH5α cells were spread on the plates. Culture plates were kept in an incubator at 37°C and growth of bacterium on control (with and without caffeine) and experimental were compared after 24 h. Colonies on each plate were counted by using colony counter and difference in the number of colonies at different concentration of caffeine (1-10 g/L) was taken an index for transformed and non-
transformed *E. coli* DH5α (Sneha Nayak et al., 2012)

Growth Curve of Transformed and Non-transformed *E. coli* DH5α

Following the transformation experiment, shake flask culture studies were carried out in minimal media containing different concentrations of caffeine (1-10 g/L) for the transformed *E. coli* DH5α cells in order to obtain the growth curve. The growth curves, thus obtained were compared with the non-transformed *E. coli* DH5α and *Brevibacterium* sp. (Sneha Nayak et al., 2012)

Biomass determination

The cell pellets after centrifugation of the culture samples were washed twice with deionized water and O.D 600 nm was measured. For cell dry weight (O.D600 nm of 0.5 corresponds to 0.379 g dry weight /100ml according to standard curve).

RESULTS AND DISCUSSION

In the present study, a plasmid of approximately 2000 bp was isolated from the *Brevibacterium* sp. This plasmid was used for transformation in *E. coli* DH5α bacterium. Non-transformed *E. coli* DH5α cells could withstand up to 1 g/L caffeine in minimal media with a very slow growth rate. However, the transformation brought about in *E. coli* DH5 α by plasmid isolated from the *Brevibacterium* sp. showed that transformants could withstand up to 8 g/L caffeine concentration in the minimal medium.

![Graph showing the comparison of growth curves for non-transformed and transformed *E. coli* DH5α](image)

Figure 1

*Comparative study of the growth curves for non-transformed (a) and transformed (b) *E. coli* DH5α in minimal media*

TABLE 1

*Comparative study of biomass of *Brevibacterium* sp. isolated from coffee pulp and transformed and non-transformed *E. coli* DH5α*

<table>
<thead>
<tr>
<th>Slope values (biomass at different concentrations of caffeine)</th>
<th>1g/L</th>
<th>2g/L</th>
<th>3g/L</th>
<th>4g/L</th>
<th>5g/L</th>
<th>8g/L</th>
<th>10g/L</th>
<th>WCWO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM with Sucrose Brevibacterium</td>
<td>4.082</td>
<td>4.006</td>
<td>3.987</td>
<td>3.876</td>
<td>4.102</td>
<td>2.908</td>
<td>1.167</td>
<td>1.654</td>
</tr>
<tr>
<td>MM with non-transformed E. coli</td>
<td>0.789</td>
<td>0.79</td>
<td>0.23</td>
<td>~0</td>
<td>~0</td>
<td>~0</td>
<td>~0</td>
<td>0.087</td>
</tr>
<tr>
<td>MM with transformed E. coli</td>
<td>0.986</td>
<td>0.87</td>
<td>0.763</td>
<td>0.879</td>
<td>0.513</td>
<td>0.432</td>
<td>~0</td>
<td>1.008</td>
</tr>
</tbody>
</table>

WCWO, Without caffeine with organism; MM, Minimal media
Screening for Transformed and Non-transformed E. coli DH5α for caffeine degradation.

The transformation in E. coli DH5α by the plasmid isolated from the Brevibacterium sp. showed that transformants could withstand up to 8 g/L caffeine concentration in the minimal medium. Growth rate of transformed was affected only beyond 8g whereas non-transformed E. coli DH5α in minimal media was significantly affected beyond 3 g/L concentration of caffeine. These experiments prove that the plasmid is used for caffeine metabolism. From the comparative study of growth of Brevibacterium sp. in minimal medium with glucose or sucrose as carbohydrate source and different concentrations of caffeine (1-10 g/L), it is evident that the growth was almost the same for 1 g/L concentration of caffeine in both the medium, whereas the growth increased in sucrose containing minimal medium. Moreover, when the concentration of caffeine exceeded beyond 3 g/L in minimal medium of non-transformed cells, there was hardly any growth. Further, transformed and non-transformed DH5α E. coli showed a lower growth rate in minimal media beyond 2 g/L caffeine concentration and up to 4 g/L as compared to Brevibacterium sp. Transformed E. coli DH5α showed lower growth rate in minimal medium beyond 3 g/L caffeine concentration and up to 8g/L as compared to Brevibacterium sp. The doubling time for Brevibacterium sp. For the control medium was 0.6 h without caffeine, but with sucrose as the carbohydrate source. It was also observed that, with the increase in concentration of caffeine in the medium, the doubling time also increased, which was significantly higher for non-transformed E. coli DH5α. There was also a significant difference in doubling time for transformed and non-transformed DH5α E.coli in the control minimal medium without caffeine.

Growth rate of transformed and non-transformed

E. coli DH5α in minimal media was significantly affected beyond 4 g/L concentration of caffeine (Fig 1). Further, transformed and non-transformed DH5α E. coli showed a lower growth rate in minimal media beyond 4 g/L caffeine concentration and up to 8 g/L as compared to Brevibacterium sp. The caffeine containing products or spent let out from the industries have many adverse effects on the environment and soil fertility. Hence biodecaffeination can be used effectively for solid waste management, which can then be used as animal feed (Mazzefera et al. 2002). This can very well be achieved through the exploitation of naturally occurring organisms and genetically engineering them to enhance their capacity of caffeine degradation.

CONCLUSION

The Study of caffeine degrading plasmid and its transformation experiments is of good use to understand the behavior of plasmid and to manipulate it for further experiments on caffeine degradation.

REFERENCES

