Internationally indexed journal

Indexed in Chemical Abstract Services (USA), Index copernicus, Ulrichs Directory of Periodicals, Google scholar, CABI, DOAJ, PSoAR, EBSCO, Open J gate, Proquest, SCOPUS, EMBASE, etc.

Rapid and Easy Publishing

The "International Journal of Pharma and Bio Sciences" (IJPBS) is an international journal in English published quarterly. The aim of IJPBS is to publish peer reviewed research and review articles rapidly without delay in the developing field of pharmaceutical and biological sciences.

Pharmaceutical Sciences
- Pharmaceutics
- Novel drug delivery system
- Nanotechnology
- Pharmacology
- Pharmacognosy
- Analytical chemistry
- Pharmacy practice
- Pharmacogenomics

Biological Sciences
- Polymer sciences
- Biomaterial sciences
- Medicinal chemistry
- Natural chemistry
- Biotechnology
- Pharmacoinformatics
- Biopharmaceutics
- Biochemistry
- Biotechnology
- Bioinformatics
- Cell biology
- Microbiology
- Molecular biology
- Neurobiology
- Cytology
- Pathology
- Immunobiology

Indexed in Elsevier Bibliographic Database
(Scopus and EMBASE)
SCImago Journal Rank 0.288
Impact factor 2.958*
Elsevier Bibliographic databases (Scopus & Embase)

SNIP value – 0.77

SJR - 0.288

IPP - 0.479

SNIP – Source normalised impact per paper
SJR – SCImago Journal rank
IPP – Impact per publication

Source – www.journalmetrics.com (Powered by scopus (ELSEVIER)

International Journal of Pharma and Bio Sciences

<table>
<thead>
<tr>
<th>Indicator</th>
<th>2006-2013</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJR</td>
<td></td>
<td>0.29</td>
</tr>
<tr>
<td>Cites per doc</td>
<td></td>
<td>0.51</td>
</tr>
<tr>
<td>Total cites</td>
<td></td>
<td>852</td>
</tr>
</tbody>
</table>

And indexed/catalogued in many more universities

*Instruction to Authors visit www.ijpbs.net
For any Queries, visit “contact” of www.ijpbs.net
PRELIMINARY PHYTOCHEMICAL INVESTIGATION OF WHOLE PLANT OF *ALYSICARPUS MONILIFER* (L.) DC

K. KARTHIKEYAN*, C.K.DHANAPAL AND G. GOPALAKRISHNAN

Department of Pharmacy, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, Chidambaram-608001.

ABSTRACT

To evaluate the phytochemical activity of different extract of aerial parts of *Alysicarpus monilifer* belonging to the family *Fabacea*. The aerial parts were collected and extract prepared from petroleum ether, ethyl acetate and methanol by hot continuous percolation method in a Soxhlet apparatus for 24 hrs. The preliminary phytochemical investigation shows presence of alkaloids, proteins & free amino acids, glycosides, phytosterols, saponins, carbohydrates & free reducing sugars, tannins & phenolic compounds and flavonoids. Each active compound shows different activities against different types of diseases like cancer, liver disorders, diabetes, atherosclerosis and inflammatory diseases etc. According to their characteristics, they can be involved in the medicinal plant category.

KEYWORDS: *Alysicarpus monilifer*, Petroleum ether, Ethyl acetate, Methanol

*Corresponding author

K. KARTHIKEYAN
Department of Pharmacy, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, Chidambaram-608001.
INTRODUCTION

Medicinal plants are great importance to the health of individuals and communities in general. The medicinal value of plants lies in some chemical substances that produce a definite physiological action on the human body. Phytochemicals are naturally occurring in the medicinal plants, leaves, vegetables and roots that have defense mechanism and protect from various diseases. Phytochemicals are primary and secondary metabolites. Chlorophyll, proteins and common sugars are included in primary constituents and secondary constituents are terpenoid, alkaloids and phenolic compounds. About 1500 plants are systematically used in indigenous system of medicine, like Ayurveda, Unani and Siddha. However, the ethnopharmacologists, botanists, microbiologists and natural-product chemists world over today is constantly still in search of medicinal efficacy of plants and their phytochemicals, since the reported data so far available on plants are comparatively meager before the vast number of plant population. Remedial plant's contents are used for the improvement of novel drug compounds that are used in the treatment of various types of diseases like liver and heart problems, cancer, diabetes and atherosclerosis etc. Alysicarpus monilifer L. (Fabacea), commonly known as Samervo (Gujarati) or Juhi ghas (Hindi), is a turf forming legume and native to Africa and Asia. In India it is distributed throughout the plains-Madras, Jammu, Bombay, Punjab, Gujarat-except Kutch and Bulsar, Madhya Pradesh and Uttar Pradesh. It is a prostrate, procumbent or decumbent perennial herb; stem of which is around 12-60cm long, woody at the base. It is a branched; branches are terete clothed with covering trichomes. The herb is up to 50cm in length and hairy when young.

Traditional uses of the plant
This plant is used traditionally as an anti-inflammatory and in stomach ache. It is an antidote to snake bite. It is also used in skin diseases and as a diuretic. The leaves are used in fever and jaundice.

MATERIALS AND METHODS

(i) Collection and Identification of plant material
The aerial parts of Alysicarpus monilifer were collected from authentic dealers from Tirunelveli, Tamilnadu. The identification of the plant materials was confirmed by consulting the Research officer- Botany (Scientiest-C), Central Council for Research in Ayurveda & Siddha, Govt. Of India (Retired), Tirunelveli, Tamilnadu. The whole plant of Alysicarpus monilifer were dried under shade, segregated, pulverized by a mechanical grinder and passed through a 40 mesh sieve.

(ii) Preparation of extracts
The collected plant material was dried (30±2ºC) for 14 days, ground and sieved to get fine powder from which the extracts were prepared by subjecting to the successive extraction, by using a hot continuous percolation method in Soxhlet apparatus with solvents of increasing polarity such as petroleum Ether (60-80), ethyl acetate and methanol. The powdered whole plant (50gm) was first extracted with petroleum ether (1L) for the de-fatting purpose. After complete extraction (18 hrs), the solvent was removed by distillation under reduced pressure. The resulting extract was dried using a water bath to get semisolid residue. Similarly, residues were prepared with ethyl acetate and methanol solvents.

PRELIMINARY SCREENING OF PHYTOCHEMICAL TEST
Phytochemical screening of petroleum ether extract, ethyl acetate extract and methanolic extract from Alysicarpus monilifer. The extracts...
were subjected to preliminary phytochemical screening for the detection of various plant constituents present. The term qualitative analysis refers to the establishing and providing the identity of a substance. The pharmacological actions of crude drugs were determined by the nature of their constituents the phytoconstituents are responsible for the desired therapeutic properties. To obtain these pharmacological effects, the plant materials itself or extract in a suitable solvent or isolated active constituent may be used. The petroleum ether extract, ethyl acetate extract and methanolic extract of *Alysicarpus monilifer* was subjected to the following chemical tests used for the identification of various active constituents.

TESTS FOR ALKALOIDS

Dragendroff’s Test
A fraction of the extracts were treated with Dragendroff’s reagent and observed for the formation of yellow colored precipitate, indicated the presence of alkaloids.

Wagner’s Test
A fraction of the extracts were treated with Wagner’s reagent and observed for the formation of a reddish brown precipitate, indicated the presence of alkaloids.

Mayer’s Test
A fraction of the extracts were treated with Mayer’s reagent and observed for the formation of white precipitate or creamy colored precipitate, indicated the presence of alkaloids.

Hager’s Test
A fraction of the extracts were treated with Hager’s reagent and observed for the formation of yellow precipitate, indicated the presence of alkaloids.

TESTS FOR CARBOHYDRATES

Molisch’s Test
To 2 mL of the extract, 1 mL of α- naphthol solution was added, and concentrated sulfuric acid is added through the sides of the test tube. Purple or reddish violet color at the junction of the two layers revealed the presence of carbohydrates.

Fehling’s Test
To 1 mL of the extract, equal quantities of Fehling’s solution A and B were added, while heating formation of a brick red precipitate that indicated the presence of carbohydrates.

Benedict’s test
To 5 mL of Benedict’s reagent, 1 mL of extract solution was added and boiled for 2 minutes and cooled. Formation of a red precipitate showed the presence of carbohydrates.

TESTS FOR GLYCOSIDES

Legal’s Test
The extracts were dissolved in pyridine and sodium nitroprusside solution was added to make it alkaline. The formation of pink red to red color showed the presence of glycosides.

TESTS FOR PHYTOSTEROLS

Libermann Burchard Test
Mixed 3 mL of the extracts were added with 3 mL of acetic acid anhydride. It was heated and then cooled. Few drops of concentrated sulfuric acid were added. Appearance of blue color shows the presence of phytosterol.

Salkowski’s Test
Dissolve the extracts in chloroform and equal volume of concentrate sulfuric acid was added. Formation of bluish red to a cherry red color in chloroform layer and green fluorescence in the acid layer represented the steroid components present in the extract.

TEST FOR FLAVONOIDS

Shinodas test
Small quantities of the extracts were dissolved in alcohol. To that some pieces of magnesium were added followed by concentrated hydrochloric acid was added drop wise and heated. Appearance of magenta color shows the presence of flavonoids.
Aqueous NaOH test
Small quantities of various extracts were dissolved separately in aqueous sodium hydroxide. Appearance of yellow color indicates the presence of flavonoids.

Conc. H₂SO₄ test
To the small portion of each extract, concentrated sulfuric acid was added. Yellow orange colour was obtained shows the presence of flavonoids.

TESTS FOR PROTEINS AND FREE AMINO ACIDS

Biuret Test
To the above prepared extracts equal volume of 5% sodium hydroxide and 1% copper sulfate solution were added. The violet color produced shows the presence of proteins and free amino acids.

Millon’s test
The above-prepared extracts were treated with a Millon’s reagent. Red color formed shows the presence of proteins and free amino acids.

Ninhydrin test
The extracts were treated with Ninhydrine reagent. Purple color produced shows the presence of proteins and free amino acids.

TEST FOR GUMS AND MUCILAGE

Swelling test
A small quantity of various extracts were added separately to 25ml of absolute alcohol with constant stirring and filtered. The precipitate was dried in air and examined for its swelling properties. No swelling was observed indicates the absence of gums and mucilages.

TEST FOR TANNINS AND PHENOLIC COMPOUNDS

Ferric chloride test
1 mL of the extract were added with ferric chloride and observed for the formation of a dark blue or greenish black color indicated the presence of tannins and phenolic compounds.

TEST FOR SAPONINS

Foam test
About 1 mL of extracts were diluted separately with distilled water to 20mL, and shaken in a graduated cylinder for 15 minutes. A 1% 1 cm layer of foam indicated the presence of saponins.

TEST FOR FIXED OILS

Spot Test
A small quantity of the extracts were pressed between two filter papers. Oil stains on the filter paper indicated the presence of fixed oils.

Saponification Test
1 mL of the extracts were added with a few drops of 0.5N alcoholic potassium hydroxide along with a drop of phenolphthalein. The mixture was heated on a water bath for 1-2 hrs. The formation of soap or partial neutralization indicated the presence of fixed oils.

RESULTS AND DISCUSSION
The above powdered materials were successively extracted with petroleum ether, ethyl acetate and methanol by hot continuous percolation method in a Soxhlet apparatus for 24 hours. The results of the phytochemical screening of petroleum ether extract, ethyl acetate extract, methanolic extract of whole plant of *Alysicarpus monilifer* were present in Table-1. Most of the Secondary metabolites were present in ethyle acetate and methanolic extracts. But the carbohydrates and reducing sugars are present in all the three solvent extracts Different types of secondary metabolites such as carbohydrates, glycosides, phytosterols, saponins, proteins, alkaloids and flavonoids were presented.Flavonoids, as antioxidants, may prevent the progressive impairment of pancreatic beta-cell function due to oxidative stress and may thus reduce the occurrence of type 2 diabetes. Saponins are used in hypercholesterolemia, hyperglycemia, antioxidant, anticancer, anti-inflammatory and weight loss etc. According to the medical field, It is a bioactive antibacterial agent of plants.
Table No: 1

Preliminary Phytochemical investigation of different extracts of Alysicarpus monilifer (L.) DC

<table>
<thead>
<tr>
<th>Name of the test</th>
<th>Pet. Ether extract</th>
<th>Ethyl acetate extract</th>
<th>Methanolic extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test for Alkaloids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dragendorff’s test</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mayer’s test</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Wagne’s test</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hager’s test</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Test for Carbohydrates & Free reducing sugars</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molloch’s test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fehling’s test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Benedict’s test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Test for Glycosides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal’s test</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Borntrager’s test</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Test for Flavonoids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aqueous NaOH test</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Conc. H2SO4 test</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Shredev’s test</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Test for Tannins and Phenolic compound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferric chloride test</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Test for Saponins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foam test</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tests for Proteins and Free amino acids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mollen’s reagent test</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ninhydrin reagent test</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Biurke test</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Test for Phytosterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liberman Buchard test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salkowski test</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Test for Fixed Oil and Fats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spot test</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Saponification test</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Test for Gum and mucilage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swelling test</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: (+) Present (-) Absent

CONCLUSION

The plant screened for phytochemical constituents, seemed to have the potential to act as a source of useful drugs and also to improve the health status of the consumers as a result of the presence of various compounds that are vital for good health. Exploitation of these pharmacological properties involves further investigation of these active ingredients by implementation techniques of extraction, identification, separation, purification and crystallization.

REFERENCE

3. Bishnu Joshi, Govind Prasad Sah, Buddha Bahadur Basnet, Megh Raj Bhatt, Dinita Sharma, Krishna Subedi, Janardhan Pandey and Rajani Malla. Phytochemical extraction and antimicrobial properties of different medicinal plants: \textit{Ocimum sanctum} (Tulsi), \textit{Eugenia caryophyllata} (Clove), \textit{Achyranthes bidentata} (Datiwan) and \textit{Azadirachta indica} (Neem). Journal of

