A CADAVERIC STUDY OF ANATOMICAL VARIATIONS IN THE THYROID GLAND

DR DEEPA G¹ AND DR SHRIKRISHNA B H²*

¹Assistant Professor, Department of Anatomy, Navodaya Medical College, Raichur Karnataka-584103
²Associate Professor, Department of Ear, Nose, Throat and Head & Neck Surgery Navodaya Medical College, Raichur. Karnataka-584103

ABSTRACT

The thyroid gland is the first endocrine gland to develop in the embryo. Developmental anomalies of thyroid gland are quite commonly seen. Most of the variations are due to the partial persistence of the median or thyroglossal duct. Persistence of pyramidal lobe, thyroglossal cysts, agenesis of the thyroid gland and aberrant thyroid are the major developmental anomalies of the thyroid gland. We conducted a study in about 20 formalin fixed cadavers to look for any morphological variations of thyroid gland including pyramidal lobe and levator glandular thyroïdae. All the anomalies detected were documented and compared with previous studies. The complete knowledge about thyroid anatomy, its variation and its associated anomalies is very important for surgeons for surgical interventions. It is also important for physicians and radiologists so that these variations are not overlooked in the differential diagnosis.

KEY WORDS: thyroid gland; anatomy; anomalies; agenesis; thyroid cartilage; surgeons

DR SHRIKRISHNA B H
Associate Professor, Department of Ear, Nose, Throat and Head & Neck Surgery
Navodaya Medical College, Raichur. Karnataka-584103

*Corresponding author
INTRODUCTION

The thyroid is an endocrine gland situated in the anterior aspect of the root of the neck. Wharton (1856) suggested that the gland was there to round out and beautify the neck by filling the vacant spaces about the larynx\(^1\). The thyroid gland, brownish-red and highly vascular, thoracic vertebral is placed anteriorly in the lower neck, level with the fifth cervical to first, thoracic vertebrae. Ensheathed by the pretracheal layer of deep cervical fascia, it has right and left lobes connected by a narrow, median isthmus\(^2\). The thyroid gland is the first endocrine gland to develop in the embryo. It begins to form approximately 24 days after fertilization\(^3\) and appears as an epithelial proliferation in the floor of the pharynx between the tuberculum impar and the copula at appoint later indicated by the foramen caecum. Subsequently, the thyroid descends in front of the pharyngeal gut as a bilobed diverticulum. During this migration, the thyroid remains connected to the tongue by a narrow canal, the thyroglossal duct which later disappears\(^4\). A conical pyramidal lobe often ascends towards the hyoid bone from the isthmus or the adjacent part of either lobe (more often the left). It is occasionally detached or in two or more parts. A fibrous or fibromuscular band, the levator of thyroid gland (musculus levator glandulae thyroideae) sometimes descends from the hyoid body to the isthmus or pyramidal lobe\(^1\). It is seen in approximately 50% of people\(^3\). The pyramidal lobe may be the source of recurrent disease when it is not removed during indicated total thyroidectomy. The identification and removal of the pyramidal lobe are also of great importance for successful postoperative radioactive iodine treatment in patients with differentiated thyroid carcinoma\(^5\). Small detached masses of thyroid tissue may occur above the lobes or isthmus as accessory thyroid glands\(^2\). The anomalies of thyroid gland distort the morphology of the gland and may cause functional disorders and various thyroid illnesses.

MATERIALS AND METHODS

A detailed cadaveric dissection of anterior midline neck region was carried out in about 20 formalin fixed cadavers which were provided for medical students in Department of Anatomy, Navodaya Medical College, Raichur. The thyroid gland was looked for any morphological variation including pyramidal lobe and levator glandular thyroideaes.

RESULTS AND OBSERVATIONS

The following anatomical variations were observed (Table no 1)
1. Agenesis of isthmus was observed in one specimen which also showed pyramidal lobe arising from right lobe (FIG 1).
2. 4 specimens showed partial agenesis of thyroid isthmus (FIG 2 & FIG 3).
3. Pyramidal lobe was observed in 5 specimens out of which 3 were seen to be arising from left lobe. One specimen showed pyramidal lobe on right side associated with agenesis of isthmus (FIG 1). Pyramidal lobe was attached to isthmus in one of the specimen (FIG 4).
4. Levator glandular thyroideaes was present in 2 cases out of which one extended from the left lobe to cricoid cartilage (FIG 5) and other from right pyramidal lobe to thyroid cartilage.

DISCUSSION

Developmental anomalies of thyroid gland are quiet commonly seen. Most of the variations are due to the partial persistence of the median or thyroglossal duct\(^6\). Persistence of pyramidal lobe, thyroglossal cysts, agenesis of the thyroid gland and aberrant thyroid are the major developmental anomalies of the thyroid gland\(^7,8\). Bland Sutton describes the prosesesus pyramidalis as part of the original thyroglossal duct, or median thyroid rudiment of His\(^9\). Pyramidal lobe was seen in 25% cases in the present study. Marshall reported the presence of pyramidal lobe in 43% of the cases\(^10\). Blumberg stated that 60.65% cases had the pyramidal lobe and in most cases its location was at left side of the gland (left: right = 3:1)\(^11\). Enayetullah found pyramidal lobe and levator glandulae thyroideaes in 50% and 32% of cases respectively\(^12\). Begums (2004) found pyramidal lobe in 26.7% and most were from the left side\(^13\). Harjeet et al. observed it in 28.9% of specimens\(^14\). Study by S.D Joshi et
al. described the pyramidal lobe in 37.7% cases and it was also observed the maximum number of pyramidal lobes was attached to left lobe(47.05%)15. Levy et al. found that pyramidal lobe was arising from the left lobe in 63% of cases. They described the presence of pyramidal lobe by radioiodine thyroid scan in 17% of normal cases and 43% of a pyramidal lobe in patients with diffuse toxic goitre16. Using thyroid scintigraphy, Siraj et al. visualized pyramidal lobe in 41% of patients, and they found a greater incidence among females17. A much better method for detecting the pyramidal lobe in the living subjects is computed tomography(CT) of the neck. According to Geraci G et al. the pyramidal lobe was identified in only 50% of cases during preoperative diagnostic treatments using either ultrasonography or Tc-99m pertechnetate scintigraphy18. Eisler made an extensive study on the levator glandulae thyroidae and its innervations. He states that the levator of the thyroid gland may be innervated either by ansa cervicalis or through vagus19. Renade et al. reported levator glandulae thyroidae in 49.5%20 and study conducted by Veena Kulkarni et al., found levator glandulae thyroidae in 30% cases21. In the present study, it was seen in 10% cases which was similar to study done by Marshall who reported levator glandulae thyroidae in 10% cases10. According to Gregory and Guse, Soemmerring’s levator glandulae thyroidae is an accessory muscle which runs from the hyoid bone to insert partly on the thyroid cartilage and partly on the isthmus of the thyroid gland22. Bourgery described and illustrated a muscle which he called as “hypothyroidien”, which occupied the place of the pyramidal lobe23. Finally, Godart reported a case in which the structure was indeed muscular, on the basis of nitric acid test for the muscle24. Soemmering’s muscle is same as the hyo-thyro-glandulaire of Pointe, the levator glandulae thyroidae superficialis medius et longus of Krause and the musculus thyroideus of Merkel, its usual full name in the literature being ‘levator glandulae thyroidae of soemmerring25’. Failure in the development of thyroid gland lead to various anomalies. Absence of the thyroid gland, or one of its lobes, are a rare anomaly. In thyroid hemi agenesis, the left lobe is more commonly absent. Mutations in the receptor for thyroid-stimulating hormone is probably involved in some cases3. In the present study, agenesis of isthmus was observed in one case which was associated with pyramidal lobe on right lobe and its incidence was 5%. Marshall described absent isthmus in 10% cases10. Yaya observed its absence in 4% of cases26. Gruber reported an absence of the isthmus in 5% of the cases which was similar to the present study15. Anson reported absence of isthmus in 6-8% of cases27. Deflice M et al. and Dumont JE et al. have reported that genetically developmental agenesis results from mutations in one of these developmental genes (TITF1, PAX8, FOXEI/TITF2), especially TITF2 because, these genes are more essential for normal development of palate and thyroid gland28,29. High separation of thyroglossal duct can provoke two independent lateral lobes with or without pyramidal lobes with absence of the isthmus. Kumar et al. has reported that due to its rare nature isthmus agenesis should be kept in mind for safe surgery to avoid complications during neck operations30. Clinically, the diagnosis of agenesis of isthmus can be done with scintigraphy. It can also be diagnosed with the aid of USG, CT, MRI or during a surgical procedure. When the image of absent isthmus is observed, a differential diagnosis against autonomous thyroid nodule, thyroiditis, primary carcinoma, neoplastic metastasis and infiltrative diseases like Amyloidosis should be considered31.

Table 1

SHOWING INCIDENCE OF THYROID GLAND VARIATIONS IN THE PRESENT STUDY

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>ANOMALY</th>
<th>INCIDENCE (TOTAL= 20 CADAVERS)</th>
<th>PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGENESIS OF ISTHMUS</td>
<td>1</td>
<td>5%</td>
</tr>
<tr>
<td>2</td>
<td>PARTIAL AGENESIS OF ISTHMUS</td>
<td>4</td>
<td>20%</td>
</tr>
<tr>
<td>3</td>
<td>PYRAMIDAL LOBE</td>
<td>5</td>
<td>25%</td>
</tr>
<tr>
<td>4</td>
<td>LEVATOR GLANDULAR THYROIDAE</td>
<td>2</td>
<td>10%</td>
</tr>
</tbody>
</table>
Figure 1
Agenesis of isthmus in a specimen which also showed pyramidal lobe arising from right lobe of thyroid gland

Figure 2
Partial agenesis of thyroid isthmus in a specimen
Figure 3

Another specimen with Partial agenesis of thyroid isthmus

Figure 4

Specimen showing pyramidal lobe attachment to isthmus
CONCLUSION

The complete knowledge about thyroid anatomy and its variation is very important for surgeons for surgical interventions. Understanding of anatomical variations and its associated anomalies is also important for physicians and radiologists so that these variations are not overlooked in the differential diagnosis.

REFERENCES

12. Enayetullah M. Gross and histomorphological study of the thyroid

