ROLE OF ATRIAL NATRIURETIC PEPTIDE IN VARIOUS CONDITIONS
VISHAL KUMAR VISHWAKARMA, JEETENDRA KUMAR GUPTA*, SHAIBA SANA QURESHI AND VIMAL AGRAWAL.
Institute of Pharmaceutical Research, GLA University Mathura - 281406, U.P, India

ABSTRACT
Atrial natriuretic peptide (ANP) was discovered twenty years ago and has a crucial role in regulating blood pressure, body fluid homeostasis and maintaining cardiovascular function. Evidences from animal model reported a decrease in estrogen level via ANP gene inhibition. Estrogen induces ANP release via ER dependent mechanism from the heart and prevents cardiac hypertrophy. It has been reported that mice lacking ANP exhibit high blood pressure due to loss of cGMP (vasodilator). ANP also inhibit L-type Ca\(^{2+}\) channel in the heart, induce vasorelaxation in arteries, decrease sympathetic nervous system activity and suppress RAAS. It has been reported that a potent vasoconstrictor (Endothelin) augments ANP secretion and up regulates ANP messenger RNA. Reduced ANP contributes in increased fluid retention in obese individuals. Pro-BNP has shown an independent risk factor for CVD with diabetes. Natriuretic peptides cause augmentation in GFR, thus contributing in glomerular hyperfiltration in diabetic rat heart. ANP improves the attenuated cardioprotective effect of ischemia preconditioning by increasing the activity of NO in diabetic rat heart. Over the past decade, ANP became an essential tool in the management of various metabolic disorders. In this article, we have focused on the physiological effects of ANP referring hypertension, hyperlipidemia, diabetes mellitus, estrogen deficiency, ischemia reperfusion injury, ischemia preconditioning and endothelins.

KEY WORDS: Atrial natriuretic peptide (ANP), estrogen, hypertension, hyperlipidemia

JEETENDRA KUMAR GUPTA
Institute of Pharmaceutical Research, GLA University Mathura - 281406, U.P, India

This article can be downloaded from www.ijpbs.net
P - 20
INTRODUCTION

Atrial Natriuretic Peptide

Every mammalian atrial myocytes have numerous storage granules specified as specific atrial granules. Lot of researches have been going on in the field of atrial natriuretic peptides (ANP) of the rat and human and the same have been rectified, synthesized and sequenced. Atrial natriuretic peptide is also known as atrial natriuretic factor, atrial natriuretic hormone, cardionatrine, cardiodilatine and atniopetin. ANP are polypeptide in nature and has vasodilator property. They are released by cardiac muscular cells. It also antagonizes aldosterone level and regulates renal function. ANP is a chain of 28 amino acids, secreted by atria in the cardiac environment. Three types of ANP receptors have been identified namely, Atrial Natriuretic Peptide Receptor A (ANPR-A), Atrial Natriuretic Peptide Receptor B (ANPR-B) and Atrial Natriuretic Peptide Receptor C (ANPR-C). The ANP receptors are biologically active and work via activation of guanylate cyclase. Calderone et al., in 1998 reported that when ANP exogenously enters in cardiac cells leads to hypertrophy synergized by noradrenaline stimulation in region of ventricular myocytes cell, whereas endogenous ANP negatively affects cardiac myocytes hypertrophy under normal and phenylephrine treated condition via cGMP dependant mechanism. When both nitric oxide (NO) and ANP raise the level of intracellular cGMP, it will slow down the cytosolic calcium level and simultaneously also activates the calcium gated potassium channel.

Role of ANP in Estrogen deficiency

It basically belongs to a class of steroid hormone that acts through binding membrane as well as intracellular receptor. Estrogen has influencing role in deposition of adipose tissue during later half of female’s life cycle. In every postmenopausal woman, the fat mass rises drastically, which leads to experience the chronic diseases like hyperlipidemia and hypertension. ANP has also been reported to decrease the level of visceral adipose tissue during estrogen therapy. At the same time post menopausal women may experience the elevation of ANP during estrogen therapy. It has been seen under preclinical studies that the estradiol triggers ANP release in isolated perfused rat heart. The estradiol not only manifest a prominent change and protection in the hypertrophic heart, but decreases the infarct size as well. Estrogen treatment shows significant protection against ischemia reperfusion injury and reduces edema in myocardial tissues in ovariectomized (ovx) rat heart. When the treatment of estradiol and its analogues were
given to female OVX rat, they trigger the release of nitric oxide (NO) synthase through guanylate cyclase pathway which elevates intracellular cGMP and protein kinase G. The elevation of intracellular cGMP / protein kinase G controls the myocardial contractility by blocking the L-type calcium channel. L-type calcium channel has concern with the production of action potential. During signal transduction events, estradiol works by estrogen receptor –α (ER- α) and estrogen receptor- β (ER-β). About 96% ER-β is similar to ER-α in DNA attachment immersed in NPR-C and NPR-A activation that elevate s beta (TGF-β) and reduces collagen I & III content.

Role of ANP in hypertension
Cardiovascular disease remains the biggest reason of mortality worldwide. Approximately 17 million people died from this disorder yearly and more than 9.4 million deaths occurred due to major cardiovascular risk factor i.e. hypertension globally. Hypertension is responsible for at least 45% of deaths due to ischemic heart disease and 51% of deaths by stroke. Hypertension is often a silent killer. Most people with hypertension do not experience any symptoms. Earlier this disorder is diagnosed, greater is the prospect for its cure. Wiinber N et al., reported that hypertension is more prominent in men than premenopausal women as endogenous estrogens regulate vasodilatation in women and thus control blood pressure. Loss of estrogen production in post menopause, women is accompanied by elevated blood pressure. The increment of hypertension renal failure leads to be severe in case of post menopause women and causes hypertension via salt retention in human body. Framingham reported that obesity is directly linked to 65% of hypertension in female. Cardiovascular diseases are responsible for the deaths in postmenopausal women. Obesity is developed by glucose intolerance, high lipid profile and is responsible for insulin resistance. In the female rat, high fat diet produces the chances of ventricular arrhythmia by increasing high lipid level in the body. High lipid diet induces obesity and ultimately leads to hypertension. Researchers reported that obesity increases the renin angiotensin pathway mechanism. Natriuretic peptides are important regulators for neurohormonal activation, which are impaired in obesity. Experimental data suggest that ANP level falls down in obese people. Low ANP leads to reduced lipolysis and lipid mobilizing action. Some author suggests that ANP type C-NPR is abundant in rats & human tissue. Obese people have low circulating ANP level that contributes for hypertension related disorders.

Role of ANP in Hyperlipidemia
Obesity is a major contributor to global burden and a big challenge for clinical and medical research. It is responsible for various cardiovascular diseases in postmenopausal women and causes hypertension via salt retention in human body. Obesity is developed by glucose intolerance, high lipid profile and is responsible for insulin resistance. In the female rat, high fat diet produces the chances of ventricular arrhythmia by increasing high lipid level in the body. High lipid diet induces obesity and ultimately leads to hypertension. Experimental data suggest that ANP level falls down in obese people. Low ANP leads to reduced lipolysis and lipid mobilizing action. Some author suggests that ANP type C-NPR is abundant in rats & human tissue. Obese people have low circulating ANP level that contributes for hypertension related disorders.
is a hormone derived from the gut after ingestion of meal46. GLP-1 has favorable effects on the vasculature along with anti-hyperglycemic actions. Long term treatment of GLP-1 receptor agonist has shown improvement in lowering blood pressure in type 2 diabetic patients47. Recently, it is reported that ANP might be essential for GLP-1 stimulated smooth muscle relaxation regulating anti-hypertensive effect in rodents.

Role of ANP in Ischemic Preconditioning (IPC)

A new situation has developed to change heart condition in accordance with ischemic preconditioning. The mechanism deals with the degree of reduction in cell injury and prolongs time ischemic damage. The intermittent episode of reperfusion and ischemia for a short span of time diminishes infarct size and prevents the heart from long term ischemic insult48. Ischemic preconditioning is a biphasic phenomenon which has two types - The early phase or classical preconditioning and the delay phase or late phase. Classical preconditioning starts within minutes and immediately diminishes within 2 to 3 hours, whereas late phase preconditioning responds in 12 to 24 hour and lasts up to 3-4 days. The late phase is also known as protection of second window49. Cohen et al., reported that preconditioning enhances the improvement in contractile function of myocardial region in rabbits. Preconditioning also has a beneficial effect on acute recovery of contractile function via delaying ischemic cell death. Infarct size and enzyme leakage are the parameters that are associated with functional recovery50. Kitakaze et al., reported that ischemic preconditioning elevates adenosine release and 5'-nucleotidase activity in the dog heart. This study contributed valuable information in the effects of I/R on purine catabolism. Downey & coworker et al hypothesized that the activation of protein kinase C (PKC) occurs via stimulation of G protein coupled receptors that, in turn leads to the PKC translocation, where it phosphorylates ATP-sensitive K+ channel, that further provides resistance to ischemia. This evidence shows that the protective effect of IPC is short term and the last for more than 2 hour. However, a delayed IPC has been shown in many species that occur 24 hours after preconditioning and last for 48 hours. Delayed IPC is mediated by the activation of antioxidant enzymes and heat shock proteins51. A delayed anti-arrhythmic effect has been reported following preconditioning52. It is concluded that ANP improves the attenuated cardioprotective effect of ischemia preconditioning by increasing the activity of NO in diabetic rat heart53.

![Fig. 2 Correlation of Nitric Oxide and ANP during IPC](image)

Role of ANP in Ischemic reperfusion (I/R)

Reperfusion (recirculation of blood flow) in ischemic tissue is beneficial for myocardial infarction. Early reperfusion protects the myocardium from damage, yet reperfusion after a prolonged ischemic insult causes tissue injury that is called ischemia reperfusion (I/R) injury54. I/R injury is influenced by microvascular dysfunction that further suppress endothelial dependent relaxing factor (EDRF) such as nitric oxide (NO) and prostacyclin that will ultimately result in reduced perfusion, capillary constriction, elevated leukocyte plugging and cellular extravasation. Inadequate supply of
oxygen to endothelial cell induces neutrophil adherence. Ischemia inadequately supports oxidative phosphorylation in mitochondrial cells due to inappropriate oxygen supply. In clinical models, ischemia may be followed by reperfusion i.e. re-supply of metabolic substrates and oxygen. Many experiments have been reported to support ischemia reperfusion injury on animals as no other therapy has been established to reduce infarct size. Currently studies suggest that anti-CD18 and anti-C5 inhibit the inflammatory mediators in reperfusion injury. Myocardial apoptosis, reperfusion injury and neutrophil activation leads to infarct area expansion and left ventricular dysfunction. It has been reported that noradrenaline concentration affects the mortality and morbidity in patients suffering with acute myocardial infarctions. ANP is atria releasing circulatory hormone with many biological effects like vasodilation and diuresis. It also suppresses aldosterone synthesis. Owen P et al., reported that increased glucose uptake in patients with myocardial ischemia results in decreased myocardial enzyme release and improved cardiac function. In cardiac myocytes of rat, ANP addition has shown increased uptake of glucose during the hypoxic condition. In Ischemic heart and ischemia/reperfusion injury, the metabolic effect of ANP may contribute in cardioprotection.

CONCLUSION

Atrial Natriuretic Peptide is the polypeptide protein of cardiac origin and help in regulating intravascular blood volume. The plasma concentration of ANP elevates in heart failure and is considered to compensate this failure because of their vasodilating effect. There are three types of ANP receptor - ANPR-A, ANPR-B and ANPR-C which control the renal function and has inhibitory effect on rennin and aldosterone system. It has been reported that estrogen treatment in ovariectomized rat prevents cardiac damage by increasing the cGMP level via NO synthase. Estrogen receptors found in heart are responsible for ANP release. ANP activate renal NO synthase that act as antihypertensive. During high blood pressure, ANP decreases cardiovascular oxidative stress. ANP shows lipolytic effect in hyperlipidemia by inhibiting renin angiotensin pathway. It has been reported that in diabetic rat heart, ANP restore the cardioprotective effect of IPC by increasing the expression of eNOS. ANP addition increases uptake of glucose during hypoxic conditions in cardiac myocytes of rats. In ischemia/reperfusion injury, the metabolic effect of ANP may contribute in cardioprotection.

ACKNOWLEDGEMENT

Authors express a deep sense of gratitude to Prof Pradeep Mishra, Director, Institute of Pharmaceutical Research, GLA University, and Prof Meenakshi Bajpai, Head of Department, Institute of Pharmaceutical Research, GLA University, Mathura for their praiseworthy inspiration and constant support for this study.

CONFLICT OF INTEREST

Conflict of interest declared none.
REFERENCES

20. Iseki K, Ikemiya Y, Fukiyama K. Risk factor so

