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ABSTRACT 

 

Proteins are biochemical compounds consisting of one or more polypeptides 
typically folded into a globular or fibrous form in a biologically functional way. Protein-
protein interactions are intrinsic to virtually every cellular process. Interactions between 
proteins have been studied through a number of high-throughput experiments and have 
also been predicted through an array of computational methods that leverage the vast 
amount of sequence of data generated in the last decade. Here we review the important 
experimental and computational methods for the prediction of interactions and functional 
linkages between proteins. An overview of some of the databases and tools that are useful 
for a study of protein–protein interactions have also been discussed. 
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INTRODUCTION 

 

Proteins are the main catalysts, structural 
elements, signaling messengers and molecular 
machines of biological tissues1. Proteins 
interact with each other within a cell, and those 
interactions give rise to the biological function 
and dynamical behavior of cellular systems. 
Generally, the protein interactions are temporal, 
spatial, or condition dependent in a specific cell, 
where only a small part of interactions usually 
take place under certain conditions. It is now 
becoming clear that protein interactions 
determine the outcome of most cellular 
processes 2-5. Therefore, identifying and 
characterizing protein–protein interactions and 
their networks is essential for understanding the 
mechanisms of biological processes at 
molecular level. Various methods have been 
used to identify protein–protein interactions. 
These interactions may range from direct 
physical interactions inferred from experimental 
methods to functional linkages predicted on the 
basis of computational analyses. Experimental 
methods based on microarrays and yeast two-
hybrid, as well as computational methods based 
on protein sequences and structures have been 
developed and widely used. To overcome the 
difficulties in experimentally identifying PPIs, a 
wide range of computational methods have 
been used to identify protein–protein functional 
linkages and interactions. These methods range 
from identifying a single pair of interacting 
proteins to the identification and analysis of a 
large network of thousands of proteins as that of 
an entire proteome of a given cell. 
 
EXPERIMENTAL METHODS FOR 
IDENTIFYING PROTEIN INTERACTION 

Traditionally, protein interactions have 
been studied individually by genetic, 
biochemical and biophysical techniques. 
However, the speed with which the new 
proteins are being discovered or predicted has 
created a need for high-throughput interaction-
detection methods. Consequently, in the last 
two years, methods have been introduced that 
can globally tackle the problem, resulting in a 
vast amount of interaction data6. Protein-protein 
interactions fall into a few broad categories. 
Fragment complementation assays such as the 
yeast two-hybrid (Y2H) system are based on 
split proteins that are functionally reconstituted 
by fusions of interacting proteins. Biophysical 
methods include structure determination and 
mass spectrometric (MS) identification of 
proteins in complexes.  

Apart from these techniques, protein 
array, Tandom affinity Purification (TAP) and 
synthetic lethality methods are also used for 
screening large number of proteins in a cell. 
Only the Y2H and protein complex purification 
combined with MS have been used on a larger 
scale. 
(i) Yeast two-hybrid method: 
 Y2H is based on the fact that many 

eukaryotic transcription activators have at 
least two distinct domains, one that directs 
binding to a promoter DNA sequence (BD) 
called bait and another that activates 
transcription (AD) called prey. It was 
demonstrated that splitting BD and AD 
inactivates the transcription, but the 
transcription can be restored if a DNA-
binding domain is physically associated with 
an activating domain 7. According to the Y2H 
method, a protein of interest is fused to bait. 
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This protein is cloned in an expression 
plasmid, which is then transfected into a 
yeast cell. A similar procedure creates a 
chimeric sequence of another protein fused 
to prey. If two proteins physically interact, 
the reporter gene is activated. Fields and 
Song generate a novel genetic system to 
study these interactions by taking advantage 
of the properties of the GAL4 protein of the 
yeast Saccharomyces cerevisiae. The most 
broadly used Y2H systems are GAL4/LexA-
based, where the GAL4 protein controls in 
yeast the expression of the LacZ gene 
encoding Beta-galactosidase. This GAL4 
protein is a transcriptional activator required 
for the expression of genes encoding 
enzymes of galactose utilization13 and 
systems for screening the interactions 
between membrane proteins 8-12. Two-hybrid 
can be applied in high-throughput mode 
across the entire proteome of an organism 
to produce a comprehensive protein-protein 
interaction map 14, 15. In this Y2H method, 
two main approaches used to screening 
genome are matrix-based, a matrix of prey 
clones is created where each clone 
expresses a particular prey protein in one 
well of a plate and library-based, each bait is 
screened against an undefined prey library 
containing random cDNA fragments or open 
reading frames (ORFs). 

 
(ii) MS Method: 
 MS is a powerful Mass Spectrometry 

method of studying macromolecular 
interactions in vitro. Mass spectrometric 
measurements are carried out in the gas 
phase on ionized analytes. A mass analyser 
in a mass spectrometer consists of an ion 
source, that measures the mass-to-charge 
ratio (m/z) of the ionized analytes, and a 
detector in MS registers the number of ions 
at each m/z value. Electrospray ionization 
(ESI) 16 and matrix-assisted laser 
desorption/ionization (MALDI) 17 are the two 

techniques most commonly used to volatize 
and ionize the proteins or peptides for mass 
spectrometric analysis. 

 MALDI and ESI have greatly advanced our 
ability to characterize large, thermally labile 
molecules by providing an efficient means of 
generating intact, gas-phase ions. These 
two techniques have been used to gain 
molecular weight information on biological 
samples with unprecedented speed, 
accuracy, and sensitivity. 

 Developments in instrumentation 18 coupled 
with newer sampling methods have enabled 
higher levels of sensitivity, increased mass 
range, and better mass accuracy and 
promoted an increasing number of MS-
based applications in the study of covalent 
and noncovalent protein structure. Both 
approaches offer unique and complementary 
capabilities. Electrospray ionization mass 
spectrometry (ESI-MS) has demonstrated 
utility for the detection and study of weakly 
bound, non covalent complexes, including 
protein interactions with inhibitors, cofactors, 
metal ions, carbohydrates, other peptides 
and proteins, enzyme–substrate pairings, 
and nucleic acid complexes19. 

 MALDI-MS is normally used to analyse 
relatively simple peptide mixtures. ESI and 
MALDI-MS commonly use quadrupole and 
time-of-flight (TOF) mass analyzers, 
respectively. ESI with quadrupole mass 
analyzers typically has accuracy on the 
order of 0.01%, and ESI with the quadrupole 
ion trap mass analysis offers the additional 
advantage of allowing collision-induced 
dissociation experiments to be performed 
without having multiple analyzers. As 
integrated liquid-chromatography ESI-MS 
systems (LC-MS) are preferred for the 
analysis of complex sample20. 

 
(iii)TAP method of complex purification: 
 Rigaut et al., 199921 and Puig et al. 22 

invented Tandem Affinity Purification (TAP).  
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Several proteins are characterized 21-24 
initially. This technique involves creating a 
fusion protein with a designed piece, the 
TAP tag on the end. The protein of interest 
with the TAP tag first binds to beads coated 
with IgG, the TAP tag is then broken apart 
by an enzyme, and finally a different part of 
the TAP tag binds reversibly to beads of a 
different type. After the protein of interest 
has been washed through two affinity 
columns, it can be examined for binding 
partners. Starting from a relatively small 
number of cells, active macromolecular 
complexes can be isolated and used for 
multiple applications.  

 Variations of the method to specifically purify 
complexes containing two given components 
or to subtract undesired complexes can 
easily be implemented. The TAP method is 
initially developed in yeast but can be 
successfully adapted to various organisms 
25. Its simplicity, high yield, and wide 
applicability make the TAP method a very 
useful procedure for purification and 
proteome exploration25, 26, 15. Several large-
scale studies of protein complexes have 
been performed using TAP–MS and Y2H 
methods 3, 27-29. 

 
COMPUTATIONAL METHODS FOR 
PROTEIN INTERACTION PREDICTION 

An experimental approach studying 
protein interactomes have certain limitations 
that can be overcome by the computational 
methods for predicting protein interactions. 
Especially, the high-throughput methods are 
believed to contain many false positives, i.e. 
interactions that are identified by experiments 
but never take place in the cell30 – 33.  

These computational methods can be very 
useful for choosing potential targets for 
experimental screening or for validating 
experimental data and can provide 
information about interaction details which 

may not be apparent from the experimental 
techniques. 

 
(i) Domain fusion: 
  The Rosetta Stone or domain fusion method 

was proposed by Eisenberg and co-
workers34. The method is based on the 
hypothesis that if domains A and B exist as 
fused in a single polypeptide AB in another 
organism, then A and B are functionally 
linked. The Empirical information from 
structural data also used to refine and 
assess domain fusion based protein 
interaction predictions. These interactions 
can then be integrated with downstream 
biochemical and genetic assays to generate 
more reliable protein interaction data sets35. 
Domain fusion analysis has shown itself to 
be well suited for predicting protein physical 
interactions in human, a complex eukaryotic 
proteome, for which it is inherently difficult to 
efficiently implement other ab initio methods 
to predict PPIs 36. 

 
(ii) Phylogenetic profile methods: 
 The phylogenetic profile (PP) method is an 

in silico method based on the hypothesis 
that functionally linked and potentially 
interacting nonhomologous proteins co-
evolve and have orthologs in the same 
subset of fully sequenced organisms 37-42.  
The phylogenetic profiles method is based 
on the assumption that there is a strong 
selective pressure on proteins that 
functionally interact with each other so that 
they are inherited together during speciation 
events38. These phylogenetic methods 
predict many functional interactions between 
proteins and help to identify specific 
functions for numerous proteins. The refined 
phylogenetic profiles method 43 based on the 
selection of the reference organisms set and 
the criteria for homology identification shows 
greater performance and potentially provides 
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more reliable functional linkages compared 
to previous methods.  

 Phylogenetic profiles can also be identified 
for protein domains instead of entire   
proteins 44. A profile is constructed for each 
domain and the presence or absence of the 
domain in different genomes is recorded 
which in turn can give information about 
domain interactions. Some drawbacks of PP 
include its high computational cost, its 
dependence on high information profiles, 
and homology detection between distant 
organisms. 

 
(iii)Methods based on co-evolution: 
 Co-evolution can be defined as the joint 

evolution of ecologically interacting species 
45 and it implies the evolution of a species in 
response to selection imposed by another. 
Co-evolution requires the existence of 
mutual selective pressure on two or more 
species 46. 

 The protein feature most intuitively related to 
co-evolution is the similarity of the 
phylogenetic trees of interacting protein 
families. Recent studies that have quantified 
the relationship between tree similarities and 
protein interactions in large data sets 46 have 
demonstrated that such similarity is not 
anecdotal 47. 

 The significance of the similarity of the trees 
of two protein families is evaluated in the 

context of the similarities to the trees of the 
rest of the proteome. Taking the complete 
co-evolutionary context into account, it 
improves the detection of interacting 
proteins. This procedure not only corrects 
the interdependence between the pairwise 
co-evolutions but it also corrects the other 
factors that influence tree similarity. It is 
clear that if a given protein interacts with 
many different partners, the changes in its 
amino-acid sequence  will be a complex 
combination of the effects produced by the 
interactions with all these partners. In this 
sense, the full network of molecular 
interactions in a cell can be seen 46. 

 

DATABASES AND TOOLS FOR 

ANALYSIS PPI: 

Large variety of databases exist to give 
information of binary protein interactions and 
the higher order interactions in protein 
complexes. This vast amount of data is 
considered as a rich source of information, from 
which new biological insight can be gained. 

In this section, we review some of the 
important databases that are used in PPIs, as 
well as some useful tools for analysis of PPIs. 
Protein interaction databases have also been 
reviewed 48. Some important databases and 
their resources are given in table 1. 

 
Table 1 

Databases 

 
URL Resources 

HPRD 

Human protein 
functions, PPIs, 
post-translational 
modifications, 
enzyme–
substrate 
relationships and 
disease 
associations 

http://www.hprd.org  
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DIP 

Experimentally 
determined 
interactions 
between proteins 

http://dip.doe-mbi.ucla.edu 

MINT 

Experimentally 
verified PPI mined 
from the scientific 
literature by 
expert curators 

http://mint.bio.uniroma2.it/mint  

BioGRID 

Protein and 
genetic 
interactions from 
major model 
organism species 

http://www.thebiogrid.org 

BIND 

Peer-reviewed 
bio-molecular 
interaction 
database 
containing 
published 
interactions and 
complexes 

http://bind.ca 

Predictome 

Experimentally 
derived and 
computationally 
predicted 
functional 
linkages 

http://visant.bu.edu 

STRING 

Protein functional 
linkages from 
experimental data 
and 
computational 
predictions 

http://string.embl.de 

ProLinks 
Protein 
functional 
linkages 

http://mysql5.mbi.ucla.edu/cgi-
bin/functionator/pronav 

IntAct 

Interaction data 
abstracted from 
literature or from 
direct data 
depositions by 
expert curators 

http://www.ebi.ac.uk/intact 

COGs 
Orthology data 
and 

http://www.ncbi.nlm.nih.gov/COG 
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phylogenetic 
profiles 

IBIS 

physical 
interactions 
observed in 
experimentally-
determined 
structures for 
protein 

http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi 
 

 

 
(i) DIP: 
 The Database of Interacting Proteins (DIP) 

http://dip.doe-mbi.ucla.edu) database49 

contains experimentally determined protein 
interactions and also includes a core subset 
of interactions that have passed a quality 
assessment 50. Interaction data are obtained 
from the literature, PDB and high-throughput 
experimental methods such as Y2H, DNA 
and protein microarrays and TAP–MS 
analysis of protein complexes. DIP is a 
member of the International Molecular 
Exchange Consortium (IMEx), a group of the 
major public providers of interaction data. 
The curation of data stored within DIP can 
be done manually or using computational 
approaches that utilize the knowledge about 
the protein- protein interaction networks 
extracted from the most reliable, core subset 
of the DIP data. 

 
(ii) STRING: 
 STRING (Search Tool for the Retrieval of 

Interacting Genes/Proteins 
http://string.embl.de/)51,52 contains 
information from numerous sources, 
including computational methods, 
experimental data, and public text 
collections. It is freely accessible and it is 
regularly updated. The latest version 8.3 
contains information about 2.5 millions 
proteins from 630 species. The graphical 
user interface is appealing and user-friendly, 
backed by an excellent visualization engine. 

Medusa (http://coot.embl.de/medusa/) a 
general graph visualisation tool is a front end 
to the STRING protein interaction database 
52. 

 
(iii)HPRD: 

Human Protein Reference Database (HPRD; 
http://www.hprd.org/)53 contains information 
relevant to the function of human proteins in 
health and disease. All the information in 
HPRD has been manually extracted from the 
literature by expert biologists who read, 
interpret and analyze the published data. 
HPRD has been created using an object 
oriented database in Zope, an open source 
web application server that provides 
versatility in query functions and allows data 
to be displayed dynamically. HPRD data is 
available for download in tab delimited and 
XML file formats. 

 
(iv) MINT: 
 A Molecular INTeraction database designed 

to store data on functional interactions 
between proteins. MINT consists of entries 
extracted from the scientific literature by 
expert curators assisted by 'MINT Assistant', 
software that targets abstracts containing 
interaction information and presents them to 
the curator in a user-friendly format. The 
interaction data can be easily extracted and 
viewed graphically through MINT Viewer 54. 

MINT also includes, as an integrated 
addition, HomoMINT, a database of 
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interactions between human proteins 
inferred from experiments with ortholog 
proteins in model organisms 
(http://mint.bio.uniroma2.it/mint/)55. 

 

CONCLUSION 

 

Cellular function can only be understood by 
considering the individual properties of cellular 
components (proteins, genes, etc.) in the 
context of their complex relationships. 
Therefore, the study of these interactions and 
complexes is establishes them in the ‘post-
genomic’ era 56.  Data on protein-protein 
interaction pose computational challenges to 
assess the data quality and organize data into a 
consistent, easily accessible database that is 
useful for further studies. These data give the 

physiological properties of living cell determined 
from biological networks. 

In this paper, we have reviewed widely 
used experimental and computational 
techniques for identifying and characterizing 
protein interactions. Each technique can provide 
a piece in the puzzle of mechanisms of protein 
recognition 57. The vast amount of sequence 
data have been generated for the predictions of 
interactions and functional associations. By 
integrating experimental methods for 
determining PPIs and computational methods 
for prediction, a lot of useful data on PPIs have 
been generated, including a number of high-
quality databases. The global overview 
presented by interaction maps is no doubt 
useful, but the finer details of the interactions 
may be significantly important to make testable 
predictions about biological systems58. 
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