Evolutionary changes in wings of neopteran insects has been examined in different groups to large extent but less in grasshoppers . Wings of insects have been considered as favourite structures to analyse diversity among the species. Morphometric Geometry studies, applied to analyse the wing structure in twenty species of grasshoppers indicated both forewings and hind wings have followed a similar pattern of vein organisation, specific to both of these wing pairs. The fore wings had all the vein complements emerging from their respective sclerite in the cubital lobe.The anal lobe of fore wings had reduced size and had two narrowly separated parallel running anal veins with restricted flexibility . This structural organization of the fore wing helped in straight positioning of these wings over folded hind wings extended over the abdomen and these serve as important structures for camouflage. Our Observations revealed that the hind wings irrespective of the species had all the vein complements in the cubital lobe plus vein complements ranging between 3-10 in the anojugal lobe. also indicated that radial veins of hind wings had more number of branches than other vein complements that has contributed towards the increase of wing nervures and cells in between. Wide angled placement of veins in both the lobes increased the laminar space of hind wings as well its curvature in all the twenty species. The cross vein links are more prominent in hind wings as squares but rectangular in fore wings. The critical statistical analysis revealed three way clustering of grasshoppers relatedness, majorly influenced by the number of anal veins and degree of divergence of different veins in both the pairs of wings. The wing venation pattern of grasshoppers bear evolutionary significance and represents a typical orthoptera wing type.
Keywords: cubital lobe, anal veins, nervures,Degree of divergence, morpho space
Full HTML:
Laffont Rémi, FirmatC, Alibert P, David B, Montuire S, SaucèdeT. Biodiversity and evolution in the light of morphometrics: frompatterns to processes. C R Palevol.2011;10(2-3):133-42. doi:10.1016/j.crpv.2010.10.004.
Tatsuta H, Takahashi KH, Sakamaki Y. Geometric morphometrics in entomology: basics and applications. Entomological Science.2018;21(2):164-84. doi: 10.1111/ens.12293.
Wilke ABB, ChristeRdO, Multini LC, Vidal PO, Wilk-da-Silva R, de Carvalho GC, et al. Morphometric Wing Characters as a Tool for Mosquito Identification. PLoS ONE .2016 .11(8): e0161643. doi: 10.1371/journal.pone.0161643
Patterson J.S. and C.J. Schofield . Preliminary study of wing morphometry in relation to tsetse population genetics. South African Journal of Science 101, March/April 2005, 132-134. https://www.researchgate.net/publication/279607228
SalcedoMaryK, HoffmannJordan, DonougheSeth, MahadevanLakshminarayanan. Size, shape and structure of insectwings.bioRxiv.2018. doi: 10.1101/478768, PMID 478768.
GrimaldiDavid, EngelMichaelS, EngelMichaelS. Evolution of the insects. Cambridge University Press; 2005.
JohanssonFrank, SöderquistM, BokmaF. Insect wing shape evolution: independent effects of migratory and mate guarding flight on dragonfly wings. BiolJLinnSoc.2009;97(2):362-72. doi: 10.1111/j.1095-8312.2009.01211.x.
ParchemRonaldJ, PerryMichaelW, PatelNipamH. Patterns on the insectwing. CurrOpin Genet Dev. 2007;17(4):300-8. doi: 10.1016/j.gde.2007.05.006, PMID 17627807.
DeVriesPJ, PenzCarlaM, HillRyanI. Vertical distribution, flightbehaviour and evolution of wingmorphology in morphobutterflies.J AnimEcol.2010;79(5):1077-85. doi: 10.1111/j.1365-2656.2010.01710.x, PMID 20487088.
JongeriusSR, Lentink D. Structural analysis of a dragonflywing. Exp Mech. 2010;50(9):1323-34.doi: 10.1007/s11340-010-9411-x.
BrodskyAndreiKThe Evolution of Insect Flight.Oxford University Press; 1994.
WoottonRJ. Geometry and mechanics of insect hind wing fans: amodelling approach. Proc R SocLondB. 1995;262(1364):181-7. doi: 10.1098/rspb.1995.0194.
AdamsDC, RohlfFJ. Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study. ProcNatlAcadSci U S A. 2000;97(8):4106-11.doi: 10.1073/pnas.97.8.4106, PMID 10760280.
BenítezHugo Alejandro, VidalMarcela, BrionesRaul, JerezViviane. Sexual dimorphism and morphologicalvariation in populations of Ceroglossuschilensis (Eschscholtz, 1829) (Coleoptera, Carabidae).J Entomol Res Soc. 2010; 12(2): 87-95. http://www.entomol.org/journal/index.php/JERS/article/view/198
PélabonChristophe, FirmatCyril, BolstadGeir H, VojeKjetil L, HouleDavid, CassaraJason, Rouzic Arnaud Le, HansenThomas F. Evolution of morphological allometry. Ann N Y Acad Sci. 2014;1320:58-75. doi: 10.1111/nyas.12470, PMID 24913643.
DebatVincent, DebelleAllan, DworkinIan. Plasticity, canalization, and developmentalstability of the DrosophilaWing: jointeffects of mutations and developmental temperature. Evolution.2009;63(11):2864-76. doi:10.1111/j.1558-5646.2009.00774.x, PMID 19624729.
MacLeodNorman. Automated taxonidentification in systematics: theory, approaches and applications. CRC Press; 2007.
ComstockJH, NeedhamJG.The wings of insects. Am Nat.1898;32(373):43-8. doi: 10.1086/276766.
Kukalová-PeckJarmila, LawrenceJohnF. Relationships among coleopteransuborders and majorEndoneopteranlineages: evidence from hindwingcharacters. Eur J Entomol. 2004;101(1):95-144.doi: 10.14411/eje.2004.018.
Lorenz Camila, SuesdekLincoln. Evaluation of chemicalpreparation on insect wing shape for geometric morphometrics. Am J Trop Med Hyg. 2013;89(5):928-31. doi: 10.4269/ajtmh.13-0359, PMID 24019438.
Outomuro David, Adams DeanC, JohanssonF. The evolution of wingshape in ornamented-winged damselflies (Calopterygidae, Odonata). Evol Biol. 2013;40(2):300-9. doi: 10.1007/s11692-012-9214-3.
BellezaBG. Cesar G D, Describing the Wing Shape of three local populations of Brontispa Longissima Using Elliptic Fourier Analysis. AnnBiol Res. 2014;5(6):47-56.
WoottonRJ, EvansKE,Herbert RC, Smith CW. The hind wing of the desert locust (Schistocerca gregaria Forskål). I. Functional morphology and mode of operation. JExpBiol.2000;203(19):2921-31. PMID10976029.
WalkerSimonM, ThomasAdrianLR, TaylorGraham K. Deformable wingkinematics in the desert locust: how and whydocamber, twist and topography vary through the stroke?J R Soc Interface.2009;6(38):735-47. doi: 10.1098/rsif.2008.0435, PMID 19091683.
HamiltonKGAndrew. The insectwing, Part IV.Vocationaltrends and the phylogeny of the wingedorders. JKans Entomol Soc. 1972:295-308. http://delphacid.s3.amazonaws.com/1950.pdf
HerbertRC, Young PG, Smith CW, Wootton RJ, Evans KE. The hindwing of the desertlocust (SchistocercaGregariaForskal). III. A finite elementanalysis of a deployable structure. J ExpBiol.2000;203(19):2945-55. PMID 10976031.
Song.H, AmédégnatoChristiane, CiglianoMaria Marta, Desutter-GrandcolasLaure, HeadsSamW, HuangYuan, OtteD, WhitingMF. 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics.2015;31(6):621-51. doi: 10.1111/cla.12116.
DharbalMeghaS, DineshU, JayashreeH, SachidanandaM, ChannaveerappaH. Body size variation analysis: sexual dimorphism in grasshoppers fits in to Rensch’s rule. ProceedingsVIBHAVAT National conference. Eds. Vijaya Reddy and Jyothi R. Reddy janasangha first grade college. Bengaluru(2015);.68-71.
JantzenBenjamin, EisnerThomas. Hindwings are unnecessary for flight but essential for execution of normal evasive flight in Lepidoptera. Proc Natl AcadSci U S A. 2008;105(43):16636-40. doi: 10.1073/pnas.0807223105. PMID 18936482.
Bai Y, DongJia-Jia, GuanDe-Long, XieJuan-Ying, XuSheng-QuanGeographic variation in wing size and shape of the grasshopper Trilophidiaannulata (Orthoptera: Oedipodidae): morphological trait variations follow an ecogeographical rule. Sci Rep. 2016;6:32680. doi: 10.1038/srep32680. PMID 2759743
Dharbal MeghaS, Udapi Dinesh, Jayashree H, Sachidananda Murthy KL, Channaveerappa H. Observation of body size in different geographical population of grasshopper Neorthocris acuticeps acuticeps (bolivar). I JPAZ. 2015; 3(4): 354-
NarinSontigun, Kabkaew L. Sukontason, Barbara K. Zajac, Richard Zehner, KomSukontason, Anchalee Wannasanand Jens Amendt. Wing morphometrics as a tool in species identification of forensically important blow flies of Thailand. Sontigun et al. Parasites & Vectors. 2017 10:229. Doi: 10.1186/s13071-017-2163-z
Chollet MB, Aldridge K, Pangborn N, Weinberg SM, DeLeonVB. Landmarking the Brain for Geometric Morphometric Analysis: An Error Study. PLoS ONE. 2014.9(1):e86005. doi:10.1371/journal.pone.0086005