International Journal of Pharma and Bio Sciences
    ISSN 0975-6299

Int J Pharm Bio Sci Volume 12 Issue 1, 2021 (January-March), Pages:72-78

Applications of Green Synthesized Silver Nanoparticles Using Calotropis Gigantea

Bhawna Nohwal, Nitish Kumar and Reeti Chaudhary

Nanoparticles have gained utmost significance due to their unique physical and chemical properties such as higher surface area, lower melting point, specific magnetic property, mechanical strength and specific optical properties. The green biological synthesis method used in the present study is a non-toxic alternative to the conventional physical and chemical nanoparticles synthesis and could be suitable for large scale production biologically. This method could be appropriate for various prospective treatments. The unique antimicrobial properties of silver (Ag) nanoparticles gained high attention in the field of nanotechnology. Calotropis gigantea has wide medicinal applications, hence it is utilized for Ag nanoparticles synthesis. In the present study, synthesis of silver nanoparticles is reported by bioreduction of Calotropis gigantea extract using silver nitrate at room temperature. The synthesized nanoparticles were then characterized and evaluated for antimicrobial and antioxidant activity. Silver nanoparticles were characterized in terms of synthesis, size distribution and microscopic evaluation by UV-Visible spectroscopy and Transmission Electron Microscope (TEM). The change of color from light brown to dark brown confirmed the biosynthesis of silver nanoparticles. Nearly spherical nanoparticles with a majority of particle size less than 50 nm were confirmed. X-ray diffraction (XRD) pattern confirmed the existence of silver in the sample. The XRD diffraction patterns revealed four diffraction peaks at 38.45°, 44.83°, 64.7° and 78.06° indexed to 110, 111, 211, 222 planes fcc. In vitro dose dependent free radical scavenging activity of biosynthesized silver nanoparticles was analyzed using 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis [3-ethylbenzothiazoline-6-sulphonic acid] salt (ABTS). The synthesized nanoparticles have the tendency to prevent cell/tissue damage occurring because of the oxidative stress. The antibacterial activity was performed against B. subtilis, S. aureus, E. coli and S. typhi. These nanoparticles revealed higher antibacterial activity against S. typhi and E. coli as compared to S. aureus and B. subtilis. The minimum inhibitory concentrations were in the range 6.6 nM and 13.2 nM.

Keywords: Calotropis gigantea, Silver nanoparticles, Anti-microbial, UV-Vis spectroscopy, Transmission electron microscopy, X-ray diffraction.
Full HTML:


1.       Argal A, Pathak AK. CNS activity of Calotropis gigantea Roots. J Ethnopharmacol. 2006;106(1):142-5. doi: 10.1016/j.jep.2005.12.024, PMID 16446065.

2.       Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011;48(4):412-22. doi: 10.1007/s13197-011-0251-1, PMID 23572765.

3.       Pavithra K, Vadivukkarasi S. Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn. Food Sci Hum Wellness. 2015;4(1):42-6. doi: 10.1016/j.fshw.2015.02.001.

4.       Stanner SA, Hughes J, Kelly CNM, Buttriss J. A review of the epidemiological evidence for the ’antioxidant hypothesis’. Public Health Nutr. 2004;7(3):407-22. doi: 10.1079/phn2003543, PMID 15153272.

5.       Sangameswaran B, Balakrishnan BR, Deshraj C, Jayakar B. In vitro antioxidant activity of roots of Thespesia Lampas dalz and gibs. Pak J Pharm Sci. 2009;22(4):368-72. PMID 19783513.

6.       Koksal E, Gülçin I. Antioxidant activity of cauliflower (Brassica oleracea L.). Turk J Agric. 2008;32(1):65-78.

7.       Kulisic T, Radonic A, Katalinic V, Milos M. Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem. 2004;85(4):633-40. doi: 10.1016/j.foodchem.2003.07.024.

8.       Aksoy L, Kolay E, A??lönü Y, Aslan Z, Karg?o?lu M. Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermopsis turcica. Saudi J Biol Sci. 2013;20(3):235-9. doi: 10.1016/j.sjbs.2013.02.003, PMID 23961240.

9.       Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ. Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection? J Antimicrob Chemother. 2004;54(6):1019-24. doi: 10.1093/jac/dkh478, PMID 15537697.

10.     Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9(5):2673-702. doi: 10.1039/C8RA08982E.

11.     Abuskhuna S, Briody J, McCann M, Devereux M, Kavanagh K, Fontecha JB, McKee V. Synthesis, structure and anti-fungal activity of dimeric Ag(I) complexes containing bis-imidazole ligands. Polyhedron. 2004;23(7):1249-55. doi: 10.1016/J.POLY.2004.02.006.

12.     Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR. A Novel Surfactant Nanoemulsion with a Unique Non-Irritant Topical Antimicrobial Activity against Bacteria, Enveloped Viruses and Fungi. Microbiological Research. 2001; 156(1): 1–7. (

13.     Skiba MI, Vorobyova VI, Pivovarov A, Makarshenko NP. Green synthesis of silver nanoparticles in the presence of polysaccharide: optimization and characterization. J Nanomater. 2020;2020, 10 pages:Article ID 3051308. doi: 10.1155/2020/3051308.

14.     Dhuper S, Panda D, Nayak PL. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera indica. Nano trends: A. J of Nanotechnol and Its Appl. 2012;13(2):16-22.

15.     Johnson I, Prabu HJ. Green synthesis and characterization of silver nanoparticles by leaf extracts of Cycas circinalis, ficus amplissima, Commelina benghalensis and Lippia nodiflora. Int Nano Lett. 2015;5(1):43-51. doi: 10.1007/s40089-014-0136-1.

16.     Ajith P, Murali AS, Sreehari H, Vinod BS, Anil A, Smitha CS. Green synthesis of silver nanoparticles using Calotropis gigantea extract and its applications in antimicrobial and larvicidal activity. Mater Today Proc. 2019;18(7):4987-91. doi: 10.1016/j.matpr.2019.07.491.

17.     Karthik C, Anand K, Moric Leecancro CM, Preethy KR. Photosynthesis of silver nanoparticles using Calotropis gigantea flower extract and its antibacterial activity. J Nanoiscience Nanoeng Appl. 2019;9(1).

18.     Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostructure Chem. 2019;9(1):1-9. doi: 10.1007/s40097-018-0291-4.

19.     Yu C, Tang J, Liu X, Ren X, Zhen M, Wang L. Green biosynthesis of silver nanoparticles using Eriobotrya japonica (Thunb.) Leaf extract for reductive catalysis. Materials (Basel). 2019;12(1):189. doi: 10.3390/ma12010189, PMID 30626021.

20.     Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. 2016;6(3):399-408. doi: 10.1007/s13204-015-0449-z.

21.     Raghunandan D, Ravishankar B, Sharanbasava G, Mahesh DB, Harsoor V, Yalagatti MS, Bhagawanraju M, Venkataraman A. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol. 2011;2(1-6):57-65. doi: 10.1007/s12645-011-0014-8, PMID 26069485.

22.     Dikilitas M, Guldur ME, Deryaoglu A, Erel O. Antioxidant and Oxidant Levels of Pepper (Capsicum annuum cv. ‘Charlee’) Infected with Pepper Mild Mottle Virus. Not Bot Horti Agrobot Cluj-Napoca. 2011;39(2):58-63. doi: 10.15835/nbha3925881.

23.     Nagaich U, Gulati N, Chauhan S. Antioxidant and antibacterial potential of silver nanoparticles: biogenic synthesis utilizing apple extract. J Pharmacol. 2016;2016:7141523. doi: 10.1155/2016/7141523, PMID 28018705.

24.     Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med. 2020;11(1):37-44. doi: 10.1016/j.jaim.2017.11.003, PMID 30120058.

25.     Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res. 2000;53(6):621-31. doi: 10.1002/1097-4636(2000)53:6<621::aid-jbm2>;2-q, PMID 11074419.

26.     Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res. 2016;7(1):17-28. doi: 10.1016/j.jare.2015.02.007, PMID 26843966.

27.     Jia X, Ma X, Wei D, Dong J, Qian W. Direct formation of silver nanoparticles in cuttlebone-derived organic matrix for catalytic applications. Colloids Surf A Physicochem Eng Aspects. 2008;330(2-3):234-40. doi: 10.1016/j.colsurfa.2008.08.016.

28.     Krishnaveni B, Priya P. Green synthesis and antimicrobial activity of silver nanoparticles from Calotropis gigantea, Catharanthus roseus, chitin and chitosan. Int J Chem Stud. 2014;1(6):10-20.

29.     Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem. 2003;51(23):6657-62. doi: 10.1021/jf034790i, PMID 14582956.

30.     Cavalli JF, Tomi F, Bernardini AF, Casanova J. Combined analysis of the essential oil of Chenopodium ambrosioides by GC, GC-MS and 13C-NMR spectroscopy: quantitative determination of ascaridole, a heat-sensitive compound. Phytochem Anal. 2004;15(5):275-79. doi: 10.1002/pca.761, PMID 15508830.

[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions