International Journal of Pharma and Bio Sciences
    ISSN 0975-6299

Int J Pharm Bio Sci Volume 12 Issue 1, 2021 (January-March), Pages:85-96

Pretreatment of Lignocellulosic Biomass for the Growth of  Oleaginous Microorganism as a Source of Biodiesel Production

Niti Srivastava and Kumar Gaurav

The industrial production of sustainable and renewable alternative of existing fuels, biodiesel, is hampered by the increasing cost and exhausting emission of edible and non-edible oil such as sunflower oil, palm oil, jatropha oil, etc. However, the main disadvantage of using these oils as a feedstock is that they directly compete with human food, which results in shortage of oil supplies worldwide. To combat this problem, microbial oil, also known as single cell oil, has been suggested as an alternative feedstock for more sustainable biodiesel production. These microbial oils are produced from oleaginous microorganism i.e. microalgae, bacteria, fungi and yeast. Among all oleaginous microorganisms, oleaginous yeast have recently gained significant attention as they can accumulate higher quantities of microbial lipids mostly in the form of triacylglycerol and fatty acids having similar profiles as those of vegetable oil. The major advantages of oleaginous yeast are higher growth rate, shorter life cycle and easier scale-up, no effect on season and climatic condition. The low-cost substrates are potential feedstock for microbial lipid production. Lignocellulosic materials can be used as a sustainable substrate for the growth of oleaginous microorganisms, as they are abundant, low cost and renewable. The major constituents of lignocellulosic biomass are cellulose, hemicellulose and lignin, which are linked with each other and make it rigid and recalcitrant. Pretreatment methods help in order to degrade the crystallinity of cellulose fibres and to remove lignin from biomass. The present paper discussed the different pretreatment methods for lignocellulosic material viz., physical, chemical and biological, to make cellulose more accessible for hydrolytic enzymes.

Keywords: Biodiesel, oleaginous yeast, lignocellulosic biomass, triacylglycerol, trans esterification.
Full HTML:


1.       Su T, Zhao D, Khodadadi M, Len C. Lignocellulosic biomass for bioethanol: recent advances, technology trends, and barriers to industrial development. Curr Opin Green Sustain Chem. 2020 Aug;24:56-60. doi: 10.1016/j.cogsc.2020.04.005.

2.       Robak K, Balcerek M. Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Microbiol Res. 2020 Nov;240:126534. doi: 10.1016/j.micres.2020.126534.

3.       Vyas AP, Verma JL, Subrahmanyam N. A review on FAME production processes. Fuel. Jan 2010;89(1):1-9. doi: 10.1016/j.fuel.2009.08.014.

4.       Gaurav K, Srivastava R, Singh R. Exploring Biodiesel: Chemistry, Biochemistry, and Microalgal Source. Int J Green Energy. 2013 May;10(8):775-96. doi: 10.1080/15435075.2012.726673.

5.       Gaurav K, Srivastava R, Sharma JG, Singh R, Singh V. Molasses-based growth and lipid production by Chlorella pyrenoidosa: A potential feedstock for biodiesel. Int J Green Energy. 2016 Jan;13(3):320-7. doi: 10.1080/15435075.2014.966268.

6.       Qari H, Rehan M, Nizami AS. Key issues in microalgae biofuels: a short review. Energy Procedia. 2017 Dec;142:898-903. doi: 10.1016/j.egypro.2017.12.144.

7.       Demirbas A. Progress and recent trends in biodiesel fuels. Energy Convers Manag. 2009 Jan;50(1):14-34. doi: 10.1016/j.enconman.2008.09.001.

8.       Lin H, Cheng W, Ding HT, Chen XJ, Zhou QF, Zhao YH. Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol. Oct 2010;101(19):7556-62. doi: 10.1016/j.biortech.2010.04.027, PMID 20444596.

9.       Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part II: Technology and potential applications. Eur J Lipid Sci Technol. 2011 Aug;113(8):1052-73. doi: 10.1002/ejlt.201100015.

10.     Yousuf A. Biodiesel from lignocellulosic biomass--prospects and challenges. Waste Manag. 2012 Nov;32(11):2061-7. doi: 10.1016/j.wasman.2012.03.008, PMID 22475852.

11.     Shields-Menard SA, Amirsadeghi M, French WT, Boopathy R. A review on microbial lipids as a potential biofuel. Bioresour Technol. 2018 Jul;259:451-60. doi: 10.1016/j.biortech.2018.03.080, PMID 29580729.

12.     Liang MH, Jiang JG. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res. 2013 Oct;52(4):395-408. doi: 10.1016/j.plipres.2013.05.002, PMID 23685199.

13.     Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol. 2008 Oct;80(5):749-56. doi: 10.1007/s00253-008-1625-9, PMID 18690426.

14.     Gouda MK, Omar SH, Aouad LM. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol. 2008 Jan;24(9):1703-11. doi: 10.1007/s11274-008-9664-z.

15.     Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C. Production strategies and applications of microbial single cell oils. Front Microbiol. 2016 Oct;7:1539. doi: 10.3389/fmicb.2016.01539, PMID 27761130.

16.     Alvarez HM, Steinbüchel A. Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol. 2002 Dec;60(4):367-76. doi: 10.1007/s00253-002-1135-0, PMID 12466875.

17.     Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H. Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol. 2008 May;74(9):2573-82. doi: 10.1128/AEM.02638-07, PMID 18310412.

18.     Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve CM, Nicaud JM. Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res. 2009 Nov;48(6):375-87. doi: 10.1016/j.plipres.2009.08.005, PMID 19720081.

19.     Dey P, Maiti MK. Molecular characterization of a novel isolate of Candida tropical is for enhanced lipid production. J Appl Microbiol. 2013 May;114(5):1357-68. doi: 10.1111/jam.12133, PMID 23311514.

20.     Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG. Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol. 2011 May;90(4):1219-27. doi: 10.1007/s00253-011-3200-z, PMID 21465305.

21.     Zhao X, Kong X, Hua Y, Feng B, Zhao Z(. Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Technol. 2008 May;110(5):405-12. doi: 10.1002/ejlt.200700224.

22.     Galbe M, Zacchi G. A review of the production of ethanol from softwood. Appl Microbiol Biotechnol. 2002 Jul;59(6):618-28. doi: 10.1007/s00253-002-1058-9, PMID 12226717.

23.     Ratledge C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie. 2004 Nov;86(11):807-15. doi: 10.1016/j.biochi.2004.09.017, PMID 15589690.

24.     Li Y, Zhao Z(, Bai F. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol. 2007 Aug;41(3):312-7. doi: 10.1016/j.enzmictec.2007.02.008.

25.     Kraisintu P, Yongmanitchai W, Limtong S. Selection and optimization for lipid production of a newly isolated oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16. Kasetsart J (Natl Sci). 2010 May–Jun;44(3):436-45. Corpus ID: 54922328.

26.     Yu X, Zheng Y, Xiong X, Chen S. Co-utilization of glucose, xylose and cellobiose by the oleaginous yeast Cryptococcus curvatus. Biomass Bioenergy. 2014 Dec;71:340-9. doi: 10.1016/j.biombioe.2014.09.023.

27.     Fontanille P, Kumar V, Christophe G, Nouaille R, Larroche C. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour Technol. 2012 Jun;114:443-9. doi: 10.1016/j.biortech.2012.02.091, PMID 22464419.

28.     Gong Z, Zhou W, Shen H, Yang Z, Wang G, Zuo Z, Hou Y, Zhao ZK. Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates. Bioresour Technol. 2016 May;207:102-8. doi: 10.1016/j.biortech.2016.01.122, PMID 26874438.

29.     Karatay SE, Dönmez G. Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresour Technol. 2010 Oct;101(20):7988-90. doi: 10.1016/j.biortech.2010.05.054, PMID 20542422.

30.     Polburee P, Yongmanitchai W, Lertwattanasakul N, Ohashi T, Fujiyama K, Limtong S. Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol. Fungal Biol. 2015 Dec;119(12):1194-204. doi: 10.1016/j.funbio.2015.09.002, PMID 26615742.

31.     Zhou W, Wang W, Li Y, Zhang Y. Lipid production by Rhodosporidium toruloides Y2 in bioethanol wastewater and evaluation of biomass energetic yield. Bioresour Technol. 2013 Jan;127:435-40. doi: 10.1016/j.biortech.2012.09.067, PMID 23138067.

32.     Huang X, Wang Y, Liu W, Bao J. Biological removal of inhibitors leads to the improved lipid production in the lipid fermentation of corn stover hydrolysate by Trichosporon cutaneum. Bioresour Technol. 2011 Oct;102(20):9705-9. doi: 10.1016/j.biortech.2011.08.024, PMID 21880481.

33.     Tsigie YA, Wang CY, Truong CT, Ju YH. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol. 2011 Oct;102(19):9216-22. doi: 10.1016/j.biortech.2011.06.047, PMID 21757339.

34.     Patel A, Arora N, Sartaj K, Pruthi V, Pruthi PA. Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renew Sustain Energ Rev. 2016 Sep;62:836-55. doi: 10.1016/j.rser.2016.05.014.

35.     Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P. Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process Technol. 2020 Mar;199. doi: 10.1016/j.fuproc.2019.106244, PMID 106244.

36.     Matsakas L, Bonturi N, Miranda EA, Rova U, Christakopoulos P. High concentrations of dried sorghum stalks as a biomass feedstock for single cell oil production by Rhodosporidium toruloides. Biotechnol Biofuels. 2015 Jan;8(1):6. doi: 10.1186/s13068-014-0190-y, PMID 25632300.

37.     Liu Y, Wang Y, Liu H, Zhang J. Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy. Bioresour Technol. 2015 Mar;180:32-9. doi: 10.1016/j.biortech.2014.12.093, PMID 25585258.

38.     Yu X, Zheng Y, Dorgan KM, Chen S. Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol. 2011 May;102(10):6134-40. doi: 10.1016/j.biortech.2011.02.081, PMID 21463940.

39.     Liang Y, Siddaramu T, Yesuf J, Sarkany N. Fermentable sugar release from Jatropha seed cakes following lime pretreatment and enzymatic hydrolysis. Bioresour Technol. 2010 Aug;101(16):6417-24. doi: 10.1016/j.biortech.2010.03.038, PMID 20417097.

40.     Haldar D, Purkait MK. Lignocellulosic conversion into value-added products: a review. Process Biochem. 2020 Feb;89:110-33. doi: 10.1016/j.procbio.2019.10.001.

41.     Amoah J, Ogura K, Schmetz Q, Kondo A, Ogino C. Co-fermentation of xylose and glucose from ionic liquid pretreated sugar cane bagasse for bioethanol production using engineered xylose assimilating yeast. Biomass and Bioenergy. 2019 Sep;128. doi: 10.1016/j.biombioe.2019.105283, PMID 105283.

42.     Palmqvist E, Hahn-Hägerdal BH. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol. 2000 Aug;74(1):25-33. doi: 10.1016/S0960-8524(99)00161-3.

43.     Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007 Apr;82(4):340-9. doi: 10.1002/jctb.1676.

44.     Papanikolaou S, Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol. 2002 Mar;82(1):43-9. doi: 10.1016/S0960-8524(01)00149-3, PMID 11848376.

45.     Gong Z, Shen H, Zhou W, Wang Y, Yang X, Zhao ZK. Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus. Biotechnol Biofuels. 2015 Nov;8(189):189. doi: 10.1186/s13068-015-0371-3, PMID 26609324.

46.     Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol. 2008 May;99(8):3051-6. doi: 10.1016/j.biortech.2007.06.045, PMID 17719773.

47.     Tsigie YA, Wang CY, Kasim NS, Diem QD, Huynh LH, Ho QP, Truong CT, Ju YH. Oil production from Yarrowia lipolytica Po1g using rice bran hydrolysate. J Biomed Biotechnol. 2012 Feb;2012:378384. doi: 10.1155/2012/378384, PMID 22496604.

48.     Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005 Apr;96(6):673-86. doi: 10.1016/j.biortech.2004.06.025, PMID 15588770.

49.     Soltanian S, Aghbashlo M, Almasi F, Hosseinzadeh-Bandbafha H, Nizami AS, Ok YS, Lam SS, Tabatabaei M. A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Convers Manag. 2020 May;212(15). doi: 10.1016/j.enconman.2020.112792, PMID 112792.

50.     Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. 2009 Mar;48(8):3713-29. doi: 10.1021/ie801542g.

51.     Matsakas L, Raghavendran V, Yakimenko O, Persson G, Olsson E, Rova U, Olsson L, Christakopoulos P. Lignin-first biomass fractionation using a hybrid organosolv - Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresour Technol. 2019 Feb;273:521-8. doi: 10.1016/j.biortech.2018.11.055, PMID 30471644.

52.     Fernández-Delgado M, Plaza PE, Coca M, García-Cubero MT, González-Benito G, Lucas S. Comparison of mild alkaline and oxidative pretreatment methods for biobutanol production from brewer’s spent grains. Ind Crops Prod. 2019 Apr;130:409-19. doi: 10.1016/j.indcrop.2018.12.087.

53.     Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol. 2009 Jan;100(1):10-8. doi: 10.1016/j.biortech.2008.05.027, PMID 18599291.

54.     Kim SM, Dien BS, Tumbleson ME, Rausch KD, Singh V. Improvement of sugar yields from corn stover using sequential hot water pretreatment and disk milling. Bioresour Technol. 2016 Sep;216:706-13. doi: 10.1016/j.biortech.2016.06.003, PMID 27289063.

55.     Pérez JA, González A, Oliva JM, Ballesteros I, Manzanares P. Effect of process variables on liquid hot water pretreatment of wheat straw for bioconversion to fuel-ethanol in a batch reactor. J Chem Technol Biotechnol. 2007 Oct;82(10):929-38. doi: 10.1002/jctb.1765.

56.     Wirawan F, Cheng CL, Lo YC, Chen CY, Chang JS, Leu SY, Lee DJ. Continuous cellulosic bioethanol co-fermentation by immobilized Zymomonas mobilis and suspended Pichia stipitis in a two-stage process. Appl Energy. 2020 Mar;266. doi: 10.1016/j.apenergy.2020.114871, PMID 114871.

57.     Kumari D, Singh R. Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energ Rev. 2018 Jul;90:877-91. doi: 10.1016/j.rser.2018.03.111.

58.     Taherzadeh MJ, Karimi K. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources. 2007 Nov;2(4):707-38.

59.     Chung YC, Bakalinsky A, Penner MH. Enzymatic saccharification and fermentation of xylose-optimized dilute acid-treated lignocellulosics. Appl Biochem Biotechnol. 2005 Mar;121-124:947-61. doi: 10.1385/ABAB:124:1-3:0947, PMID 15930573.

60.     Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 2011 May;2011:787532. doi: 10.4061/2011/787532, PMID 21687609.

61.     McIntosh S, Vancov T. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol. 2010 Sep;101(17):6718-27. doi: 10.1016/j.biortech.2010.03.116, PMID 20403691.

62.     Sills DL, Gossett JM. Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass. Bioresour Technol. 2011 Jan;102(2):1389-98. doi: 10.1016/j.biortech.2010.09.035, PMID 20933396.

63.     Singh J, Suhag M, Dhaka A. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym. 2015 Mar;117(6):624-31. doi: 10.1016/j.carbpol.2014.10.012, PMID 25498680.

64.     Carrozza CF, Papa G, Citterio A, Sebastiano R, Simmons BA, Singh S. One-pot bio-derived ionic liquid conversion followed by hydrogenolysis reaction for biomass valorization: A promising approach affecting the morphology and quality of lignin of switchgrass and poplar. Bioresour Technol. 2019 Dec;294:122214. doi: 10.1016/j.biortech.2019.122214.

65.     Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant DJ, Rajesh Banu J, Rao CV, Kim YG, Yang YH. Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol. 2020 Mar;300:122724. doi: 10.1016/j.biortech.2019.122724.

66.     Mohammadi M, Shafiei M, Karimi K, Abdolmaleki A, Mikkola J-P, Larsson C. Improvement of ethanol production from birch and spruce pretreated with 1-H-3- methylmorpholinium chloride. Electron J Biotechnol. 2019 Sep;41:95-9. doi: 10.1016/j.ejbt.2019.07.004.

67.     Shi J, Sharma-Shivappa RR, Chinn M, Howell N. Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy. 2009 Jan;33(1):88-96. doi: 10.1016/j.biombioe.2008.04.016.

68.     Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011 Nov–Dec;29(6):675-85. doi: 10.1016/j.biotechadv.2011.05.005, PMID 21624451.

69.     Ding ZT, Xu DM, Bai J, Li FH, Adesogan AT, Zhang P, Yuan XJ, Guo XS. Characterization and identification of ferulic acid esterase-producing Lactobacillus species isolated from Elymus nutans silage and their application in ensiled alfalfa. J Appl Microbiol. 2019 Jul;127(4):985-95. doi: 10.1111/jam.14374, PMID 31287933.

70.     Ariaeenejad S, Jokar F, Hadian P, Ma’mani L, Gharaghani S, Fereidoonnezhad M, Salekdeh GH. An efficient nano-biocatalyst for lignocellulosic biomass hydrolysis: xylanase immobilization on organically modified biogenic mesoporous silica nanoparticles. Int J Biol Macromol. 2020 Dec;164(1):3462-73. doi: 10.1016/j.ijbiomac.2020.08.211, PMID 32888986.

71.     Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002 May;83(1):1-11. doi: 10.1016/S0960-8524(01)00212-7, PMID 12058826.

72.     Rabinovich ML, Melnik MS, Bolobova AV. Microbial cellulase [review]. Appl Biochem Microbiol. 2002 Jul;38(4):305-22. doi: 10.1023/A:1016264219885.

73.     Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci. 2008 Sep;9(9):1621-51. doi: 10.3390/ijms9091621, PMID 19325822.

74.     Larsson S, Quintana-Sáinz A, Reimann A, Nilvebrant N, Jönsson LJ. Influence of Lignocellulose-Derived Aromatic Compounds on Oxygen-Limited Growth and Ethanolic Fermentation by Saccharomyces cerevisiae. Appl Biochem Biotechnol. 2000 Mar;84-86(1-9):617-32. doi: 10.1385/ABAB:84-86:1-9:617.



[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions