International Journal of Pharma and Bio Sciences
 
 
    ISSN 0975-6299
www.ijpbs.net


REVIEW ARTICLE
Int J Pharm Bio Sci Volume 12 Issue 3, 2021 (July-September), Pages:20-37

Role of Biotic Elicitors Arbuscular Mycorrhizal Fungi (AMF) In Improving Growth, Development and Production of Plant Secondary Metabolites

 

Babina Rana
DOI: http://dx.doi.org/10.22376/ijpbs.2021.12.3.B20-37
Abstract:

Physiological performance of plants in general, particularly cultured plant productivity and crop quality depend on the rhizosphere characteristic feature, an area of great interest to plants, producers, consumers and environmental health. Among the rhizosphere components, arbuscular mycorrhizal fungi (AMF) are one of the most common types of symbiotic association between some  rhizospheric microorganisms and plant roots. AMF leads to the production of reactive oxygen species (ROS) which stimulates formation of highly active signaling compounds capable of triggering production of bioactive compounds (secondary metabolites) that enhances the medicinal value of the plant.The study revealed that inoculation of AMF cause significant increase in length of root and shoot, plant height, fresh and dry weight, relative water content, membrane stability index and total chlorophyll. Changes in total carbohydrate, total free amino acid, total protein content, carotenoids, tocopherol and flavonoids content were also observed. Constitutive activities of CAT, POD, DPPH and ABTS showed an enhancement due to AMF inoculation studied.  AMF concomitantly increase essential oil production and biomass in an herbaceous species rich in commercially valued essential oils. Therefore, AMF potentially represent an alternative way of promoting growth of important medicinal herb, as natural ways of growing such crops are currently highly sought after in the herbal industry.

Keywords: Arbuscular Mycorrhizal Fungi,Elicitors (biotic and abiotic), Root Colonization, Sporulation
Full HTML:

REFERENCES 

  1. Jambor J. Kierunkirozwojukrajowego rynku surowców i przetworówzielarskich. Herba Pol. 2001;47:103-21.
  2. HillAF. Economic botany. 1952. A textbook of useful plant and plant Products.2nded. New York: MCGraw-Hill Book                   Company Inc, U .S .A. 743p.
  3. Strack D, Fester T, Hause B, Schliemann W, Walter MH. Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J ChemEcol. 2003;29(9):1955-79. doi: 10.1023/a:1025695032113, PMID 14584670.
  4. Akiyama K, Hayashi H. Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in cucumber roots. Biosci Biotechnol Biochem. 2002;66(4):762-9. doi: 10.1271/bbb.66.762, PMID 12036048
  5. Khaosaad T, Krenn L, Medjakovic S, Ranner A, Lössl A, Nell M, Jungbauer A, Vierheilig H. Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. J PlantPhysiol. 2008;165(11):1161-7. doi: 10.1016/j.jplph.2007.08.015, PMID 18160126
  6. Fester T, Hause B, Schmidt D, Halfmann K, Schmidt J, Wray V, Hause G, Strack D. Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots. PlantCell Physiol. 2002;43(3):256-65. doi: 10.1093/pcp/pcf029, PMID 11917079.
  7. Gosling P, Hodge A, Goodlass G, Bending GD. Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ. 2006;113(1-4):17-35. doi: 10.1016/j.agee.2005.09.009.
  8. Diouf J. Biotechnologies for agriculturaldevelopment. Food Agriculture Organization of the United Nations. Rome. 2011.
  9. Shalhevet S, Haruvy N, Spharim I. Management strategies for agricultural biotechnology in small countries, a case study of Israel. BiotechnolAdv. 2001;19(7):539-54. doi: 10.1016/s0734-9750(01)00082-9, PMID 14538065.
  10. Cameron DD. Arbuscular mycorrhizal fungi as (agro) ecosystem engineers. Plant Soil. 2010;333(1-2):1-5. doi: 10.1007/s11104-010-0361-y.
  11. Raviv M. The use of mycorrhiza in organically grown crops under semiarid conditions, a review of benefits, constraints and future challenges. Symbiosis. 2010;52(2):65-74.
  12. Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D. Agroecology, the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza. 2010;20(8):519-30. doi: 10.1007/s00572-010-0333-3, PMID 20697748.
  13. Smith SE, Read DJ. Mycorrhizal symbiosis. London, UK: Academic Press;2008. p. 3.
  14. Miller RM, Jastrow JD. Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem. 1990;22(5):579-84. doi: 10.1016/0038-0717(90)90001-G.
  15. Jastrow JD, Miller RM, Lussenhop J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie1The submitted manuscript has been created by the University of Chicago as operator of Argonne National Laboratory under Contract No. W-31-109-ENG-38 with the US Department of Energy. Soil Biol Biochem. 1998;30(7):905-16. doi: 10.1016/S0038-0717(97)00207-1.
  16. Rillig MC, Wright SF, Eviner VT. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation, comparing effects of five plant species. PlantSoil. 2002;238(2):325-33. doi: 10.1023/A:1014483303813.
  17. Abu-Zeyad R, Khan AG, Khoo C, Cunn FC. Occurrence of arbuscular mycorrhiza in Castanospermum australeand effects on growth and production of castanospermine. Mycorrhiza. 1999;9(2):111-7.
  18. Kapoor R, Giri B, Mukerji KG. Mycorrhization of coriander (Coriandrum sativumL.) to enhance the concentration and quality of essential oil. J Sci Food Agric. 2002;82(4):339-42. doi: 10.1002/jsfa.1039.
  19. Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J. Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanumsp.,Lamiaceae). Mycorrhiza. 2006;16(6):443-6. doi: 10.1007/s00572-006-0062-9, PMID 16909287.
  20. ToussaintJ-, Smith FA, Smith SE. Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza. 2007;17(4):291-7. doi: 10.1007/s00572-006-0104-3, PMID 17273856.
  21. Toussaint JP. Investigating physiological changes in the aerial parts of AM plants, what do we know and where should we be heading. Mycorrhiza. 2007;17(4):349-53. doi: 10.1007/s00572-007-0133-6, PMID 17476534.
  22. Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M. Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil. 2010;335(1-2):311-23. doi: 10.1007/s11104-010-0417-z.
  23. Zubek S, Mielcarek S, Turnau K. Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatumL.are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza. 2012;22(2):149-56. doi: 10.1007/s00572-011-0391-1, PMID 21626142.
  24. Copetta A, Lingua G, Berta G. Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicumL.var. Genovese. Mycorrhiza. 2006;16(7):485-94. doi: 10.1007/s00572-006-0065-6, PMID 16896796.
  25. Bethlenfalvay GL, Linderman RG. Mycorrhizae and Crop Productivity. Mycorrhizae in sustainable agriculture. ASA Publication. Madison, USA. 1992;54:1-28.
  26. Feldmann F, Idczak E, Martins G, Nune J, Gasparotto L, Preisinger H, et al. Recultivation of degraded, fallow lying areas in central Amazonia with equilibrated polycultures, response of useful plants to inoculation with VA mycorrhizal fungi. AngewBot. 1995;69(1):111-8.
  27. Wang C, Li X, Zhou J, Wang G, Dong Y. Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commun SoilSci PlantAnal. 2008;39(3-4):499-509. doi: 10.1080/00103620701826738.
  28. Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16(5):299-363. doi: 10.1007/s00572-005-0033-6, PMID 16845554.
  29. Ma J, He XL, Jiang ZM, Wang LY. Influence of soil factors on arbuscular mycorrhizal fungal infection of Salvia miltiorrhiza. Acta Agric Bor Occi Sin.2009;18(1):194-8.
  30. AugéRM. Water relations, drought and Vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 2001;11(1):3-42. doi: 10.1007/s005720100097.
  31. Smith SE, Read DJ. Mycorrhiza symbioses. London: Elsevier;2008.
  32. RaoSR, Ravishankar GA. Plant cell cultures, chemical factories of secondary metabolites. BiotechnolAdv. 2002;20(2):101-53. doi: 10.1016/s0734-9750(02)00007-1, PMID 14538059.
  33. Edeoga HO, Eriata DO. Alkaloids, Tannin and Saponin Contents of Some Nigerian Medicinal Plants. J MedAromat Plant Sci. 2001;23:344.
  34. Yuan ZL, Dai CC, Chen LQ. Regulation and accumulation of secondary metabolites in plant–fungus symbiotic system. AfrJ Biotechnol. 2007;6(11):1266-71.
  35. Araim G, Saleem A, Arnason JT, CharestC. Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpureaL.Moench. J Agric Food Chem. 2009;57(6):2255-8doi: 10.1021/jf803173x, PMID 19239187.
  36. Baslam M, Esteban R, García-Plazaola JI, Goicoechea N. Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Microbiol Biotechnol. 2013a;97(7):3119-28. doi: 10.1007/s00253-012-4526-x, PMID 23108529.
  37. Charitha Devi MC, Reddy MN. Phenolic acid metabolism of groundnut (Arachis hypogaeaL.) plants inoculated with VAM fungus and Rhizobium. Plant Growth Regul. 2002;37(2):151-6. doi: 10.1023/A:1020569525965.
  38. Yao MK, Désilets H, Charles MT, Boulanger R, Tweddell RJ. Effect of mycorrhization on the accumulation of rishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza. 2003;13(6):333-6. doi: 10.1007/s00572-003-0267-0, PMID 14505123.
  39. Copetta A, Lingua G, Berta G. Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicumL.var. Genovese. Mycorrhiza. 2006;16(7):485-94. doi: 10.1007/s00572-006-0065-6, PMID 16896796.
  40. Sivasithamparam K, Ghisalberti EL. In Trichoderma and GliocladiumHarmanGE, Kubicek CP, editors. Vol. 1.London: Taylor & Francis Ltd;1998. p. 139-91.
  41. Reino JL, Guerrero RF, Hernández-Galán R, Collado IG. Secondary metabolites from species of the biocontrol agent Trichoderma. PhytochemRev. 2007;7(1):89-123. doi: 10.1007/s11101-006-9032-2.
  42. Xiao-Yan S, Qing-Tao S, Shu-Tao X, Xiu-Lan C, Cai-Yun S, Yu-Zhong Z. Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningiiSMF2 against plant pathogens. FEMS MicrobiolLett. 2006;260(1):119-25. doi: 10.1111/j.1574-6968.2006.00316.x, PMID 16790027.
  43. Mukherjee PK, Horwitz BA, Kenerley CM. Secondary metabolism in Trichoderma, a genomic perspective. Microbiology (Reading). 2012;158(1):35-45. doi: 10.1099/mic.0.053629-0, PMID 21998165.
  44. Karuppusamy S. A review on trendsof secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants Res. 2009;3(13):1222-39.
  45. Karppinen K, Hokkanen J, Tolonen A, Mattila S, Hohtola A. Biosynthesis of hyperforin and adhyperforin from amino acid precursors in shoot cultures of Hypericum perforatum. Phytochemistry. 2007;68(7):1038-45. doi: 10.1016/j.phytochem.2007.01.001, PMID 17307206.
  46. Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A. Early signalling events induced by elicitors of plant defences. Mol PlantMicrobe Interact. 2006;19(7):711-24. doi: 10.1094/MPMI-19-0711, PMID 16838784.
  47. Frank AB. microbiology. Dehradun, India: Bishan Singh Mahendra Pal;1885. p. 83-114.
  48. Molina R, Massicotte H, Trappe JM. Specific phenomena in mycorrhizal symbiosis, Community ecological consequences and practical implications. In:AllenM, editorMycorrhizal functioning an integrative plant fungi process. New York: Chapman & Hall;1992. p. 357-423.
  49. Selosse M-A, Le Tacon F. 1998. The land ?ora: a phototroph–fungus partnership? Selosse MA, Le Tacon F. The land ?ora: a phototroph–fugus partnership. Trends in Ecology & Evolution.1998 13:15–20.
  50. Allen MF. The ecology of mycorrhiza. Cambridge, UK: Cambridge University Press;1991. p. 184.
  51. Read DJ. Mycorrhiza in ecosystems. Experientia. 1991;47(4):376-91. doi: 10.1007/BF01972080.
  52. Smith SE, Read DJ, Harley JL. Mycorrhizal symbiosis. Vol. 1. San Diego: Academic Press;1997. p. 605.
  53. Singh S. Role of mycorrhiza in tree planting in the field, field inoculation, fungal succession and effect of climatic and edaphic factors. Mycorrhiza News. 2001;12(4):2-12.
  54. Aggarwal P. Ectomycorrhizal fungi in three major forest types in Central Himalaya and their effect on seedling growth [Ph.D.thesis].Nainital, India: Kumaun University;2007.
  55. Yasman I. Dipterocarpaceae: tree-Mycorrhizae seedling connections [Ph.D.thesis].The Netherlands: Wageningen Agricultural University;1995
  56. Powell CL, Daniel J. Growth of white clover in undisturbed soils after inoculation with efficient mycorrhizal fungi. NZJ AgricRes. 1978;21(4):675-81. doi: 10.1080/00288233.1978.10427465.
  57. Verma RK, Sharma N, Soni KK. Forest fungi of centralIndia. Lucknow, India: International Book Distributing Company;2008.
  58. Singh G, Sekhon HS, Sharma P. Effect of irrigation and biofertilizer on water use, nodulation, growth and yield of chickpea (Cicer arietinumL.). Arch Agron Soil Sci. 2011;57(7):715-26. doi: 10.1080/03650340.2010.493880.
  59. Pandey AN, Palni LM. The rhizosphere effect in trees of the Indian Central Himalaya with special reference to altitude. ApplEcol EnvironRes. 2007;5(1):93-102. doi: 10.15666/aeer/0501_093102.
  60. Pandey A, Palni LMS. Tea rhizosphere, Microbial diversity and characteristic features and comments on microbial communication in rhizosphere. IntJ Tea Sci. 2004;3(1):285-90.
  61. Chaurasia B, Khare PK. Hordeum vulgare, a suitable host for mass production of arbuscular mycorrhizal fungi from natural soil. ApplEcol EnvironRes. 2005;4(1):45-53. doi: 10.15666/aeer/0401_045053.
  62. Read DJ. The structure and function of vegetative mycelium of mycorrhizal roots. In: Jennings DH, Rayner ADM, editors. Ecology and physiology of the fungal mycelium. Cambridge: Cambridge University Press; 1984. p. 215-40.
  63. Dash S, Gupta N. Microbial bioinoculants and their role in plant growth and development. IntJ Biotechnol MolBiolRes. 2011;2(13):232-51.
  64. Brahmaprakash GP, Sahu PK. Biofertilizers for sustainability. J Indian Inst Sci. 2012;92(1):37-62.
  65. Sharma RD, Junqueira NTV, Gomes AC. Pathogenicity and reproduction of Meloidogyne javanicaon yellow passion fruit hybrid. NematolBras. 2001;25(2):247-9.
  66. Sieverding E. Vesicular-arbuscular mycorrhiza management in tropical agrosystems. TechCoopFedRepub Germany Eschborn. 1991.
  67. Brundrett MC. Co-evolution of roots and mycorrhizas of land plants. New Phytol. 2002;154(2):275-304. doi: 10.1046/j.1469-8137.2002.00397.x.
  68. Fester T, Hause B, Schmidt D, Halfmann K, Schmidt J, Wray V, Hause G, Strack D. Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots. PlantCell Physiol. 2002;43(3):256-65. doi: 10.1093/pcp/pcf029, PMID 11917079.
  69. Zhu HH, Yao Q. Localized and systemic increase of phenols in tomato roots induced by Glomusvermiforme inhibits Ralstonia solanacearum. J Phytopathol. 2004;152(10):537-42. doi: 10.1111/j.1439-0434.2004.00892.x.
  70. Bennett RN, Wallsgrove RM. Secondary metabolites in plant defence mechanisms. New Phytol. 1994;127(4):617-33. doi: 10.1111/j.1469-8137.1994.tb02968.x, PMID 33874382.
  71. Kapoor R, Giri B, Mukerji KGGlomus macrocarpum, a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn). World J Microbiol Biotechnol. 2002;18(5):459-63. doi: 10.1023/A:1015522100497.
  72. Turk MA, Assaf TA, Hameed KM, Al-Tawaha AM. Significance of mycorrhizae. World J AgricSci. 2006;2(1):16-20.
  73. Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress, a review. Ann Bot. 2009;104(7):1263-80. doi: 10.1093/aob/mcp251, PMID 19815570.
  74. Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H. Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza. 2011;21(2):117-29. doi: 10.1007/s00572-010-0316-4, PMID 20499112.
  75. Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants growth at high salinity. SciHortic. 2009;121(1):1-6. doi: 10.1016/j.scienta.2009.01.001.
  76. Huang Z, He CX, He ZQ, Zou ZR, Zhang ZB. The effects of arbuscular mycorrhizal fungi on reactive oxyradical scavenging system of tomato under salt tolerance. AgricSci China. 2010;9(8):1150-9. doi: 10.1016/S1671-2927(09)60202-9
  77. Fan L, Fang C, Dube C, Deschenes M, Dalpe Y. Agriculture and Agri-food. Canadian. 2010.
  78. Cartmill AD, Valdez-Aguilar LA, Bryan DL, Alarcón A. Arbuscular mycorrhizal fungi enhance tolerance of vinca to high alkalinity in irrigation water. SciHortic. 2008;115(3):275-84. doi: 10.1016/j.scienta.2007.08.019.
  79. Ingleby K, Wilson J, Munro RC, Cavers S. Mycorrhizas in agroforestry, spread and sharing of arbuscular mycorrhizal fungi between trees and crops: complementary use of molecular and microscopic approaches. PlantSoil. 2007;294(1-2):125-36. doi: 10.1007/s11104-007-9239-z.
  80. Fortunato IM, Ruta C, Castrignanò A, Saccardo F. The effect of mycorrhizal symbiosis on the development of micropropagated artichokes. SciHortic. 2005;106(4):472-83. doi: 10.1016/j.scienta.2005.05.006.
  81. Koltai H. Mycorrhiza in floriculture: difficulties and opportunities. Symbiosis. 2010;52(2-3):55-63. doi: 10.1007/s13199-010-0090-2.
  82. Druege U, Baltruschat H, Franken P. Piriformospora indicapromotes adventitious root formation in cuttings. SciHortic. 2007;112(4):422-6. doi: 10.1016/j.scienta.2007.01.018.
  83. Miransari M, Bahrami HA, Rejali F, Malakouti MJ. Effects of soil compaction and arbuscular mycorrhiza on corn (Zea maysL.) nutrient uptake. Soil TillRes. 2009;103(2):282-90. doi: 10.1016/j.still.2008.10.015.
  84. Johnson NC, Wilson GWT, Bowker MA, WilsonJA, Miller RM. Resource limitation is a driver of local adaptation in mycorrhizal symbiosis. Proc Natl Acad Sci U S A. 2010;107(5):2093-8. doi: 10.1073/pnas.0906710107, PMID 20133855
  85. Miller RM, Jastrow JD. Hierarchy of root and mycorrhizal fungal interaction with soil aggregation. Soil Biol Biochem. 1990;22(5):579-84. doi: 10.1016/0038-0717(90)90001-G.
  86. Rillig MC, Wright SF, Eviner VT. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation, comparing effects of five plant species. PlantSoil. 2002;238(2):325-33. doi: 10.1023/A:1014483303813.
  87. Bedini S, Cristani C, Avio L, Sbrana C, Turrini A, Giovannetti M.Influence of organic farming on arbuscular mycorrhizal fungal populations in a Mediterranean agro-ecosystem. Proceedings of the 16th IFOAM organicworldcongress, Jun16-20, Modena, Italy;2008.
  88. Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G. Arbuscular mycorrhizae increase the arsenic translocation factor in the as hyper accumulating fern Pteris vittataL.Chemosphere. 2006;65(1):74-81. doi: 10.1016/j.chemosphere.2006.02.048, PMID 16603227.
  89. Abdel LatefAAH, Chaoxing H. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. SciHortic. 2011;127(3):228-33doi: 10.1016/j.scienta.2010.09.020
  90. Bona E, Marsano F, Massa N, Cattaneo C, Cesaro P, Argese E, Sanità di Toppi L, Cavaletto M, Berta G. Proteomic analysis as a tool for investigating arsenic stress in Pteris vittataroots colonized or not by arbuscular mycorrhizal symbiosis. J Proteomics. 2011;74(8):1338-50. doi: 10.1016/j.jprot.2011.03.027, PMID 21457805.
  91. Petre M, Teodorescu RIPress CD, editor. Dic?ionar de biotechnologie. Bucure?ti, Romania;2010.
  92. Johansen A, Finlay RD, Olsson PA. Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomusintraradices. New Phytol. 1996;133(4):705-12. doi: 10.1111/j.1469-8137.1996.tb01939.x.
  93. Smith FA, Smith SE. What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants?Plant Soil. 2011;348(1-2):63-79. doi: 10.1007/s11104-011-0865-0.
  94. Ike-Izundu NE. Interaction between arbuscular mycorrhizal fungi and soil microbial population in the rhizosphere [doctoralthesis];2007.
  95. Schüβler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota, phylogeny and evolution. MycolRes. 2001;105(12):1413-21. doi: 10.1017/S0953756201005196.
  96. Morton JB, Redecker D. Concordant morphological and molecular characters reclassify five arbuscular mycorrhizal fungal species into new genera, Archaeospora and paraglomus, of new families Archaeosporaceae and paraglomaceae, respectively mycologia. 2002;93(1):181-95.
  97. Graham JH, Syvertsen JP, Smith ML. Water relations of mycorrhizal and phosphorus fertilized non-mycorrhizal citrus under drought stress. New Phytol. 1987;105(3):411-9. doi: 10.1111/j.1469-8137.1987.tb00878.x, PMID 33873912.
  98. Rani DBR, Raghupathy S, Mahadevan A. Incidence of arbuscular mycorrhizae in coal wastes. Proceedings of the second Asian conference onMycorrhiza. 1991;1:77-80.
  99. Sambandan K, Raman N, Kannan K. Association of arbuscular mycorrhizal fungi with Casuarina equisetifoliaat different soil types in Tamil nadu, India. In: Proceedings of the second Asian conference on mycorrhiza. Vol. 1; 1991. p. 61-5.
  100. Reddy AR, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol. 2004;161(11):1189-202.doi: 10.1016/j.jplph.2004.01.013.
  101. Raman N, Nagarajan N. Incidence of mycorrhizal association in a forest fire site in Servaroyan Hills, Tamil nadu. In:Mycorrhizae: Biofertilizers for the Future. Proceedings of the thirdnationalconference on Mucorrhizae. Vol. 1;1995. p.100-3.
  102. Mehrotra VS. Arbuscular mycorrhizal associations in plants colonizing overburdened soil at an open cast coal mine site. In:Mycorrhizae: Biofertilizers for the FutureAdholeya A, Singh S, editors. Proceedings of the thirdnationalconference on mycorrhizae. Vol. 1;1995. p. 22-9.
  103. Mahesh V. Studies on arbuscular mycorrhizal fungi associated with some grasses in industrially polluted soils and its influence on effluent tolerance of SorghumbicolourL.Moench. Ph.D. [thesis].Tiruchirapalli, Tamil Nadu, India: Bharathidasan University. p. 155;2002; 1.
  104. Hepper CM, Sen R, Maskall CS. Identification of arbuscular mycorrhizal fungi in roots of leek (Allium porrum) and maize (Zea maysL.) on the basis of enzyme mobility during polyacrylamide gel electrophoresis. New Phytol. 1986;102(4):529-39. doi: 10.1111/j.1469-8137.1986.tb00829.x.
  105. Olsson PA, Johansen A. Lipid and fatty acid composition of hyphae and spores of arbuscular mycorrhizal fungi at different growth stages. MycolRes. 2000;104(4):429-34. doi: 10.1017/S0953756299001410.
  106. Van-Aarle IM, Olsson PA. Fungal lipid accumulation and development of mycelial structures by two arbuscular mycorrhizal fungi. Appl EnvironMicrobiol. 2003;69(11):6762-7. doi: 10.1128/aem.69.11.6762-6767.2003, PMID 14602638.
  107. Harley JL, Smith SE. Mycorrhizal symbiosis. Vol. 1. London: Academic Press;1983. p. 334.
  108. Linderman RG. Role and use of arbuscular mycorrhizae in root disease management. Phytopathology. 2004;94(6):126.
  109. Köberl M, Schmidt R, Ramadan EM, Bauer R, Berg G. The microbiome of medicinal plants, diversity and importance for plant growth, quality, and health. Front Microbiol.2013;4(1):400.doi:10.3389/fmicb.2013.00400
  110. ToussaintJ-, Smith FA, Smith SE. Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza. 2007;17(4):291-7. doi: 10.1007/s00572-006-0104-3, PMID 17273856.
  111. Bowles DJ. Defence-related proteins in higher plants. AnnuRev Biochem. 1990;59(1):873-907. doi: 10.1146/annurev.bi.59.070190.004301
  112. Gianinazzi Pearson V, Gollotte A, Dumas-Gaudot E, Franken P, Gianinazzi S. Gene expression and molecular modifications associated with plant responses to infection by arbuscular mycorrhizal fungi. In:advances in molecular genetics of plant microbe interactionsDaniels M, Downic JA, Osbourn AE, editors. Dordrecht: Kluwer Publishers;1994. p. 179-86.
  113. Krishna H, Singh SK, Sharma RR, Khawale RN, Grover M, Patel VB. Biochemical changes in micro propagated Grape (Vitis viniferaL.) plantlets due to arbuscular mycorrhizal fungi (AMF) inoculated during ex vitro acclimatization. SciHortic. 2005;106(4):554-67. doi: 10.1016/j.scienta.2005.05.009.
  114. Benabdellah K, Azcon-Aguilar C, Ferrol N. Soluble and membrane symbiosis related polypeptides associated with the development of arbuscular mycorrhizas in tomato (Lycopersicon esculentum). New Phytol. 1998;140(1):135-43. doi: 10.1046/j.1469-8137.1998.00255.x.
  115. Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil. 1988a;198(1):97-107
  116. Wang C, Li X, Zhou J, Wang G, Dong Y. Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commun SoilSci PlantAnal. 2008;39(3-4):499-509. doi: 10.1080/00103620701826738.
  117. Mohammad MJ, Hamad SR, Malkawi HI. Population of arbuscular mycorrhizal fungi in semi-arid environment of Jordan as influenced by biotic and abiotic factors. J Arid Environ. 2003;53(3):409-17. doi: 10.1006/jare.2002.1046.
  118. Louis I, Lim G. Spore density and root colonization of VA mycorrhiza intropical soil. Trans BrMycolSoc. 1987;88(2):207-12. doi: 10.1016/S0007-1536(87)80216-4.
  119. Saif R. The influence of soil aeration on the efficiency of VAM. Effect of soil oxygen on the growth and mineral uptake of Eupatorium odoratumL.inoculated with Glomusmacrocarpus. New Physiol. 1986;88(4):649-59.
  120. Mridha MAU, Dhar PP. Biodiversity of arbuscular Mycorrhizal colonization and spore population in different agroforestry trees and crop species growing in Dinajpur, Bangladesh. J ForRes. 2007;18(2):91-6. doi: 10.1007/s11676-007-0018-8
  121. Sharief M, Burni T. Arbuscular mycorrhizal incidence and infectivity in wheat and maize crops of Bannu and D.I.Khanarea, Pakistan. PakJ Plant Sci. 2005;11(1):67-77.
  122. Nasrullah M, Sharief KR, Burni T. Occurrence and distribution of AMF in wheat and maize crops of Malakand division of North West Frontier Province.
  123. Kliebenstein DJ. Secondary metabolites and plant environment interactions, a.
  124. 121, Laitinen ML, Julkunen-Tiitto R, Tahvanainen J, Heinonen J, Rousi M. Variationin birch (Betula pendula) shoot secondary chemistry due to genotype, environment, and ontogeny. J ChemEcol. 2005;31(4):697-717. doi: 10.1007/s10886-005-3539-7, PMID 16124246.
  125. Lerdau M, Coley PD. Benefits of the carbon-nutrient balance hypothesis. Oikos. 2002;98(3):534-6. doi: 10.1034/j.1600-0706.2002.980318.x.
  126. Ann Lila M. The nature?versus?nurture debate on bioactive phytochemicals, the genome versus terroir. J Sci Food Agric. 2006;86(15):2510-5.doi: 10.1002/jsfa.2677.
  127. 124. Lu C, ShenYM. Harnessing the potential of chemical defences from antimicrobial activities. Bio Essays. 2004;26(7):808-13.
  128. Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV. 125LugtenbergBJ, chin-A-Woeng TF, BloembergGV. Microbe-plant interactions, principles and mechanisms. AntonieLeeuwenhoek. 2002;81(1):373-83. doi: 10.1023/A:1020596903142.
  129. Field B, Jordán F, Osbourn A. First encounters-deployment of defence-related natural products by plants. New Phytol. 2006;172(2):193-207. doi: 10.1111/j.1469-8137.2006.01863.x, PMID 16995908
  130. Hahlbrock K, Bednarek P, Ciolkowski I, Hamberger B, Heise A, Liedgens H, Logemann E, Nürnberger T, Schmelzer E, Somssich IE, Tan J. Non-self-recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant pathogen interactions. Proc Natl Acad Sci U S A. 2003;100(1);Suppl 2:14569-76. doi: 10.1073/pnas.0831246100, PMID 12704242.
  131. Smith SE, Read DJ. Mycorrhizal symbiosis. London, UK: Academic Press;2008. p. 3.
  132. BainardLD, KlironomosJN, GordonAM. The mycorrhizal status and colonization of 26tree species growing in urban and rural environments. Mycorrhiza. 2011;21(2):91-6. doi: 10.1007/s00572-010-0314-6, PMID 20422233.
  133. AntunesPM, KochAM, DunfieldKE, HartMM, Downing A, RilligMC, Klironomos JN. Influence of commercial inoculation with Glomusintraradiceson the structure and functioning of an AM fungal community from an agricultural site. PlantSoil. 2009;317(1-2):257-66. doi: 10.1007/s11104-008-9806-y.
  134. Gerdemann JW. The effect of mycorrhiza on the growth of maize. Mycologia. 1964;56(3):342-9. doi: 10.1080/00275514.1964.12018116.
  135. Miransari M, Bahrami HA, Rejali F, Malakouti MJ. Effects of soil compaction and arbuscular mycorrhiza on corn (Zea maysL.) nutrient uptake. Soil TillRes. 2009;103(2):282-90. doi: 10.1016/j.still.2008.10.015.
  136. Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM. Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. PlantSoil. 2006;282(1-2):209-25. doi: 10.1007/s11104-005-5847-7.
  137. Cavagnaro TR, Martin AW. Arbuscular mycorrhizas in southeastern Australian processing tomato farm soils. Plant Soil. 2011;340(1-2):327-36. doi: 10.1007/s11104-010-0603-z.
  138. Subramanian KS, Santhanakrishnan P, Balasubramanian P. Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. SciHortic. 2006;107(3):245-53.doi: 10.1016/j.scienta.2005.07.006.
  139. Tabassum Y, Tanvir B, Farrukh H. Effect of arbuscular mycorrhizal inoculation on nutrient uptake, growth and productivity of cowpea (Vigna unguiculata) varieties. AfrJ Biotechnol. 2011;10(43):8593-8. doi: 10.5897/AJB10.1494.
  140. Ortas I. Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. SpanJ AgricRes. 2010;8(1):116-22.
  141. Martínez-Medina A, Roldán A, Pascual JA. Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianumunder conventional and low input fertilization field condition in melon crops, growth response and Fusarium wilt biocontrol. Appl Soil Ecol. 2011;47(2):98-105. doi: 10.1016/j.apsoil.2010.11.010.
  142. Binet MN, Van Tuinen D, Deprêtre N, Koszela N, Chambon C, Gianinazzi S. Arbuscular mycorrhizal fungi associated with Artemisia umbelliformisLam, an endangered aromatic species in Southern French Alps, influence plant P and essential oil contents. Mycorrhiza. 2011;21(6):523-35. doi: 10.1007/s00572-010-0354-y, PMID 21243378.
  143. Gogoi P, Singh RK. Differential effect of some arbuscular mycorrhizal fungi on growth of Piper longumL. (Piperaceae). Indian J Sci Technol. 2011;4(2):119-25. doi: 10.17485/ijst/2011/v4i2.14.
  144. Asrar AW, Elhindi KM. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J BiolSci. 2011;18(1):93-8. doi: 10.1016/j.sjbs.2010.06.007, PMID 23961109.
  145. Miransari M, Bahrami HA, Rejali F, Malakouti MJ. Effects of soil compaction and arbuscular mycorrhiza on corn (Zea maysL.) nutrient uptake. Soil TillRes. 2009;103(2):282-90. doi: 10.1016/j.still.2008.10.015
  146. Ibijbijen J, Urquiaga S, Ismaili M, AlvesBJR, Boddey RM. Effect of arbuscular mycorrhizas on uptake of nitrogen by Brachiaria arrectaand Sorghum vulgarefrom soils labelled for several years with 15N. New Phytol. 1996;133(3):487-94.doi: 10.1111/j.1469-8137.1996.tb01916.x.
  147. Gerdemann JW. The effect of mycorrhiza on the growth of maize. Mycologia. 1964;56(3):342-9. doi: 10.1080/00275514.1964.12018116
  148. Liu A, Hamel C, Elmi A, Costa C, Ma B, Smith DL. Concentrations of K, Ca and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. CanJ Soil Sci. 2002;82(3):272-8. doi: 10.4141/S01-022.
  149. Al-Karaki GN. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. SciHortic. 2006;109(1):1-7. doi: 10.1016/j.scienta.2006.02.019.
  150. Goussous SJ, Mohammad MJ. Comparative effect of two arbuscular mycorrhizae and N and P fertilizers on growth and nutrient uptake of onions. IntJ Agric Biol. 2009;11(4):463-7.
  151. Goicoechea N, Antolin MC, Sanchez?Diaz M. Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. PhysiolPlant. 1997;100(4):989-97.
  152. Augé RM, Stodola AJW, Tims JE, Saxton AM. Moisture retention properties of a mycorrhizal soil. PlantSoil. 2001;230(1):87-97. doi: 10.1023/A:1004891210871.
  153. Augé RM, Toler HD, Sams CE, Nasim G. Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza. 2008;18(3):115-21. doi: 10.1007/s00572-008-0162-9, PMID 18228050.
  154. Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG. Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol.1995;108(1):7-15.doi: 10.1104/pp.108.1.7, PMID 12228450.
  155. Dehne HW. Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology. 1982;72(1):1115-9.
  156. Linderman RG. Role and use of arbuscular mycorrhizae in root disease management. Phytopathology. 2004;94(6):126.
  157. Sundaresan P, Raja NU, Gunasekaran P.Gunasekaran P. Iinduction and accumulation of phytoalexins in cowpea roots infected with a mycorrhizal fungus Glomusfasciculatumand their resistance to Fusariumwilt disease. J Biosci. 1993;18(2):291-301. doi: 10.1007/BF02703126.
  158. Cruz AF, Ishii T. Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil?borne plant pathogens. BiolOpen. 2012;1(1):52-7. doi: 10.1242/bio.2011014, PMID 23213368.
  159. AugéRM. Water relations, drought and Vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 2001;11(1):3-42. doi: 10.1007/s005720100097.
  160. Ibrahim SMM, Taha LS, Farahat MM. Influence of foliar application of pepton on growth, flowering and chemical composition of Helichrysum bracteatumplants under different irrigation plants under different irrigation intervals. Ozean J ApplSci. 2010;3(1):143-55.
  161. Abdel ANG, Mahgoub MH, Mazher AAM. Physiological effect of phenylalanine and tryptophan on the growth and chemical constituents of Antirrhinum majusplants. Ozean J ApplSci. 2009;2(4):399-407.
  162. Abdel ANG, Mazher AAM, Farahat MM. Response of vegetative growth and chemical constituents of Thuja orientalisL.plant to foliar application of different amino acids at Nubaria. J AmSci. 2010;6(3):295-301.
  163. Dai CC, Xie H, Wang XX, Li PD, Zhang TL, Li YL, et al. Intercropping peanut with traditional Chinese medicinal plants improves soil microcosm environment and peanut production in subtropical China. AfrJ Biotechnol. 2009;8(16):3739-46.
  164. Radhika KP, Rodrigues BF. Arbuscular mycorrhizal fungal diversity in some commonly occurring medicinal plants of Western Ghats, Goa region. J ForRes. 2010;21(1):45-52. doi: 10.1007/s11676-010-0007-1.
  165. Cho EJ, Lee DJ, Wee CD, Kim HL, Cheong YH, Cho JS, Sohn BK. Effects of AM fungi inoculation on growth of panax ginseng C.A.Meyer seedlings and on soil structures in mycorrhizosphere. SciHortic. 2009;122(4):633-7. doi: 10.1016/j.scienta.2009.06.025.
  166. Zhang ZY, Lin WX, Yang YH, Chen H, Chen XJ. Effects of consecutively mono cultured Rehmannia glutinosaL.on diversity of fungal community in rhizospheric soil. AgricSci China. 2011;10(9):1374-84. doi: 10.1016/S1671-2927(11)60130-2.
  167. Jurkiewicz A, Ryszka P, Anielska T, Waligórski P, Bia?o?ska D, Góralska K, Tsimilli-Michael M, Turnau K, et al. Optimization of culture conditions of Arnica montanaL.effects of mycorrhizal fungi and competing plants. Mycorrhiza. 2010;20(5):293-306. doi: 10.1007/s00572-009-0280-z, PMID 19838743
  168. Araim G, Saleem A, Arnason JT, CharestC. Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpureaL.Moench. J Agric Food Chem. 2009;57(6):2255-8. doi: 10.1021/jf803173x, PMID 19239187.
  169. Wang C, Li X, Zhou J, Wang G, Dong Y. Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commun SoilSci PlantAnal. 2008;39(3-4):499-509. doi: 10.1080/00103620701826738.
  170. Tang M, Xue S, Yang H. Vesicular arbuscular mycorrhizal (VAM) fungi of xerophyte in Gansu. J Yunnan AgricUniv. 2004;19(6):638-42.
  171. Chatterjees S, Chatterjee S, Dutta S. A survey on VAM association in three different species of Cassiaand determination of antimicrobial property of these phyto extracts. J Med Plants Res. 2010;4(4):286-92.
  172. Khamna S, Yokota A, Lumyong S. Actinomycetes isolated from medicinal plant rhizosphere soils, diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol. 2009;25(4):649-55. doi: 10.1007/s11274-008-9933-x.
  173. Sagar A, Kumari R. Fungal associates of Centella asiaticaand Ocimumsanctum. J Pure ApplMicrobiol. 2009;3(1):243-8.
  174. Shi Z, Chen Y, Hou X, Gao S, Wang F. Arbuscular mycorrhizal fungi associated with tree peony in 3 geographic locations in China. TurkJ Agric For. 2013;37(6):726-33. doi: 10.3906/tar-1301-69
  175. Awasthi A, Bharti N, Nair P, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A. Synergistic effect of Glomusmosseaeand nitrogen fixing Bacillus subtilisstrain Daz26 on artemisinin content in Artemisia annuaL.Appl Soil Ecol. 2011;49(1):125-30. doi: 10.1016/j.apsoil.2011.06.005.
  176. Yang AN, Lu L, Wu CX, Xia MM. Arbuscular mycorrhizal fungi associated with HuangshanMagnolia (Magnolia cylindrica). J MedPlantsRes. 2011;5(18):4542-8.
  177. Khaliel AS, Shine K, kumar V. Salt tolerance and mycorrhization of Bacopa monnierigrown under sodium chloride saline conditions. AfrJ MicrobiolRes. 2011;5(15):2034-40.
  178. Panwar J, Tarafdar JC. Distribution of three endangered medicinal plant species and their colonization with arbuscular -mycorrhizal fungi. J Arid Environ. 2006;65(3):337-50. doi: 10.1016/j.jaridenv.2005.07.008.
  179. Sun T, Ho CT. Antioxidant activities of buckwheat extracts. Food Chem. 2005;90(4):743-9. doi: 10.1016/j.foodchem.2004.04.035.
  180. Sharma D, Kapoor R, Bhatnagar AK. Arbuscular mycorrhizal (AM) technology for the conservation of Curculigo orchioidesGaertn.:an endangered medicinal herb. World J Microbiol Biotechnol. 2008;24(3):395-400. doi: 10.1007/s11274-007-9488-2.
  181. Zhang HY, Xue QH, Shen GH, Wang DS. Effects of actinomycetes agent on ginseng growth and rhizosphere soil microflora. Ying Yong Sheng Tai Xue Bao. 2013;24(8):2287-93. PMID 24380350.
  182. De la Rosa-Mera CJ, Ferrera-Cerrato R, Alarcón A, de Jesús Sánchez-Colín M, Muñoz-Muñiz OD. Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant Soil. 2011;349(1-2):367-76. doi: 10.1007/s11104-011-0883-y.
  183. Gianinazzi S, Gollotte A, Binet MN,Van Tuinen D, Redecker D, Wipf D. Agroecology, the key role of arbuscular mycorrhizas in ecosystem servicesMycorrhiza. Mycorrhiza. 2010;20(8):519-30. doi: 10.1007/s00572-010-0333-3, PMID 20697748.
  184. Bonfante P, Genre A. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. NatCommun. 2010;1(1):48. doi: 10.1038/ncomms1046, PMID 20975705.
  185. Pedone?Bonfim MV, Lins MA, Coelho IR, Santana AS, Silva FS, Maia LC. Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina.) Brenan seedlings.J Sci Food Agric. 2013;93(6):1479-84. doi: 10.1002/jsfa.5919, PMID 23108717.
  186. Baslam M, Esteban R, García-Plazaola JI, Goicoechea N. Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. ApplMicrobiol Biotechnol. 2013a;97(7):3119-28. doi: 10.1007/s00253-012-4526-x, PMID 23108529.
  187. Pedone?Bonfim MV, Lins MA, Coelho IR, Santana AS, Silva FS, Maia LC. Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina.) Brenan seedlings. J Sci Food Agric. 2013;93(6):1479-84. doi: 10.1002/jsfa.5919, PMID 23108717.
  188. Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C, Scarpato R. Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. BrJ Nutr. 2012;107(2):242-51. doi: 10.1017/S000711451100290X, PMID 21733294
  189. Walter MH, Fester T, Strack D. Arbuscular mycorrhizal fungi induce the non?mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the yellow pigment and other apocarotenoids.Plant J. 2000;21(6):571-8. doi: 10.1046/j.1365-313x.2000.00708.x, PMID 10758508.
  190. Strack D, Fester T. Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol. 2006;172(1):22-34. doi: 10.1111/j.1469-8137.2006.01837.x, PMID 16945086.
  191. Tristão FSM, AndradeSALd, SilveiraAPDd. Fungos micorr?zicos arbusculares na formacao de mudas de Cafeeiro, em substratos organicos comerciais. Bragantia. 2006;65(4):649-58. doi: 10.1590/S0006-87052006000400016.
  192. Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbiosis.Soil Biol Biochem.2009;41(6):1233-44. doi: 10.1016/j.soilbio.2009.03.005.
  193. Khaliel AS. Influence of vesicular-arbuscular mycorrhizae in some desert plants and correlation with edaphic factors. In:Mycorrhiza for Green Asia, firasian conference on mycorrhizae. India: University of Madras; 1988; 1(1). p. 56-9
  194. Bergen M, Koske RE. Vesicular-arbuscular mycorrhizal fungi from sand dunes of Cape Cod, Massachusetts. Trans BrMycolSoc. 1984;83(1):157-8. doi: 10.1016/S0007-1536(84)80259-4.
  195. Singh S. Role of mycorrhiza in tree planting in the field, field inoculation, fungal succession and effect of climatic and edaphic factors. Mycorrhiza News. 2001;12(4):2-12.
  196. Furihata T, Suzuki M, Sakurai H. Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseusprotoplasts. PlantCell Physiol. 1992;33(8):1151-7.
  197. Goldstein AH. Bacterial solubilization of mineral phosphates, historical perspective and future prospects. AmJ AlternAgric. 1986;1(2):51-7. doi: 10.1017/S0889189300000886.
  198. Sabannavar SJ, Lakshman HC. Effect of rock phosphate solubilization using mycorrhizal fungi and phosphobacteria on two high yielding varieties of Sesamum indicumL.World J AgricSci. 2009;5(4):470-9.
  199. Bagyaraj DJ, Krishnaraj PU, Khanuja SP. Mineral phosphate solubilisation, agronomic implications, mechanism and molecular genetics. Proc Indian NatlSciAcad. Reviews and Tracts-Biological Sciences. 2000;66(2/3):69-82.
  200. Bagyaraj DJ.KehriHK. AM fungi, importance, nursery inoculation and performance after out planting. In: Tilak KV, BR, Kehri HK, New India Publishing Agency, editorsMicrobial diversity and functions(edsBagyaraj DJ.New Delhi;2012. p. 641-68.
  201. Adesemoye AO, Torbert HA, Kloepper JW. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. MicrobEcol. 2009;58(4):921-9. doi: 10.1007/s00248-009-9531-y, PMID 19466478.
  202. Cooper KM, Tinker PB. Translocation and transfer of nutrients in vesicular?arbuscular mycorrhizas. II. UPTAKE AND TRANSLOCATION OF PHOSPHORUS, ZINC AND SULPHUR. New Phytol. 1978;81(1):43-52. doi: 10.1111/j.1469-8137.1978.tb01602.x.
  203. Hayman DS. Mycorrhiza and crop production. Nature. 1980;287(5782):487-8. doi: 10.1038/287487a0.
  204. Koide RT, Li M. On host regulation of the vesicular-arbuscular mycorrhizal symbiosis. New Phytol. 1990;114(1):59-74. doi: 10.1111/j.1469-8137.1990.tb00373.x, PMID 33874296.
  205. Bagyaraj DJ. Microbial biotechnology for sustainableagriculture.New Delhi: Horticulture and Forestry, New India Publishing Agency;2011
  206. Gosling P, Hodge A, Goodlass G, Bending GD. Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ. 2006;113(1-4):17-35. doi: 10.1016/j.agee.2005.09.009.
  207. Pozo MJ, Azcón-Aguilar C. Unraveling mycorrhiza-induced resistance. CurrOpin PlantBiol. 2007;10(4):393-8. doi: 10.1016/j.pbi.2007.05.004, PMID 17658291
  208. Smith FA, Jakobsen I, Smith SE. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol. 2000;147(2):357-66. doi: 10.1046/j.1469-8137.2000.00695.x.
  209. Allen MF. Linking water and nutrients through the vadose zone, a fungal interface between the soil and plant systems. J Arid Land. 2011;3(3):155-63. doi: 10.3724/SP.J.1227.2011.00155.
  210. BalestriniR, LuminiE, BorrielloR, Bianciotto V. Plant-soilbiota interactions in Soil Microbiology, Ecology and BiochemistryPaul EA, editor.London: Academic Press, Elsevier;2015. p. 311-38.
  211. Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLOSONE. 2014;9(6):e90841. doi: 10.1371/journal.pone.0090841, PMID 24608923.
  212. Tamayo E, Gómez-Gallego T, Azcón-Aguilar C, Ferrol N. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front PlantSci. 2014;5(1):547. doi: 10.3389/fpls.2014.00547, PMID 25352857.
  213. Göhre V, Paszkowski U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta. 2006;223(6):1115-22. doi: 10.1007/s00425-006-0225-0, PMID 16555102.
  214. Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. EnvironPollut. 2008;153(1):137-47. doi: 10.1016/j.envpol.2007.07.012, PMID 17888550
  215. Cornejo P, Pérez-Tienda J, Meier S, Valderas A, Borie F, Azcón-Aguilar C, Ferrol N. Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biol Biochem. 2013;57(1):925-8. doi: 10.1016/j.soilbio.2012.10.031.
  216. Meier S, Cornejo P, Cartes P, Borie F, Medina J, Azcón R. Interactive effect between Cu?adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of Oenothera picensisgrowing in Cu?polluted soils. J Plant Nutr Soil Sci. 2015;178(1):126-35. doi: 10.1002/jpln.201400092.217 
  217.  Lenoir I, Fontaine J, Sahraoui, ALH. Arbuscular mycorrhizal fungal responses to abiotic stresses: Areview.Phytochemistry.2016; 23: 4–15.
  218. Del Val C, Barea, JM,  Azcón-Aguilar C. Assessing the tolerance to heavy metals of arbuscular mycorrhizalfungi isolated from sewage sludge-contaminated soils. Appl. Soil Ecol. 1999; 11:261–269.
  219. Del Val C, Barea, JM, Azcón-Aguilar C. Diversity of Arbuscular Mycorrhizal Fungus Populations inHeavy-Metal-Contaminated Soils. Appl. Environ. Microbiol.1999; 65:718–723
  220.  Weissenhorn I,  Glasho A,  Leyval, C, Berthelin J.Differential tolerance to Cd and Zn of arbuscularmycorrhizal (AM) fungal spores isolated from heavy metal-polluted and unpolluted soils. Plant. Soil 1994;167:189–196.
  221.  Van Der Heijden, MGA.; Klironomos, JN, Ursic M, Moutoglis, P, Streitwolf-Engel R, Boller, T, Wiemken A, Sanders, IR. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variabilityand productivity. Nature.1998; 396:69–72.
  222.  HoeksemaJD,  ChaudharyVB,  GehringCA,  Johnson NC, Karst, J, KoideRT, Pringle, A,  Zabinski, C,Bever JD,  Moore JC.et al. A meta-analysis of context-dependency in plant response to inoculation withmycorrhizal fungi. Ecol. Lett. 2010; 13:394–407.
  223.  OsakabeY, OsakabeK, ShinozakiK. Response of plants to water stress. Front. Plant. Sci.2014; 5: 5.
  224. Balestrini, R, Lumini E. Focus on mycorrhizal symbioses. Appl. Soil Ecol. 2018; 123:299–304.
  225. ZhuXC,  SongFB, LiuSQ, LiuTD. Effects of arbuscular mycorrhizal fungus on photosynthesis andwater status of maize under high temperature stress. Plant. Soil 2011, 346, 189–199. 
  226. CaradoniaF, Francia E, MorciaCGhizzoniR, Moulin L, Terzi VRonga D. Arbuscular MycorrhizalFungi and Plant Growth Promoting Rhizobacteria Avoid Processing Tomato Leaf Damage during ChillingStress.Agronomy.2019;9:299.
  227. Bender SF, Plantenga F, Neftel A, JocherM, Oberholzer HR, KöhlL, Giles M, Daniell TJ,Van Der Heijden MG. Symbiotic relationships between soil fungi and plants reduce N2O emissions fromsoil. ISME J.2013; 8: 1336–1345.
  228. Nguvo KJ,  Gao X. Weapons hidden underneath: Bio-Control agents and their potentials to activate plantinduced systemic resistance in controlling crop Fusarium diseases. J. Plant. Dis. Prot. 2019; 126:177–190..
  229.  Cameron DD, Neal AL, Van Wees SA, Ton, J. Mycorrhiza-induced resistance: More than the sum of itsparts? Trends Plant. Sci. 2013;18:539–545.
  230. Hoffmann D, Vierheilig H, Schausberger P. Arbuscular mycorrhiza enhances preference of ovipositingpredatory mites for direct prey-related cues. Physiol. Èntomol. 2010; 36: 90–95.
  231. Schübbler A, Schwarzott, D,WalkerC.Anew fungal phylum, the Glomeromycota: Phylogeny and evolution.Mycol. Res. 2001;105:1413–1421
  232. KoideRT,SchreinerRP.Regulationofthevesiculararbuscularmycorrhizalsymbiosis.AnnualReviewofPlantPhysiologyPlantMolecularBiology.1992;43:557–581.
  233. BleeKA,AndersonAJ.DefenserelatedtranscriptaccumulationinPhaseolusvulgarisL.colonizedbythearbuscularmycorrhizalfungusGlomusintraradices,Schenk&Smith.PlantPhysiology.1996;110:675–688.
  234. Blee KA, Anderson AJ. Defense responses in plants toarbuscularmycorrhizalfungi.In:PodilaGK,  Douds  DD,eds. Current advances in mycorrhizae research. Minnesota,USA:TheAmericanPhytopathologicalSociety, 2000:27–44.
  235. FrankenP,RequenaN,Bu¨tehornB,KrajinskiF,KuhnG, Laponin L, Mann P, Rhody D, Stommel M. Molecularanalysis of the arbuscular mycorrhizas symbiosis. Archives ofAgronomyandSoilScience.2000;45:271–286.
  236. Dumas-GaudotE,FurlanV,  GrenierJ,  Asselin  A.  Newacidicchitinase  isoform  induced  in  tobacco  rootsby vesicular–arbuscular mycorrhizal fungi. Mycorrhiza.1992;1:,133–136.
  237. DassiB,Dumas-GaudotE,AsselinA,RichardC,GianinazziS.Chitinase and b-1,3-glucanase isoforms expressed in pearootsinoculatedwitharbuscularmycorrhizalorpathogenicfungi.EuropeanJournalofPlantPathology.1996;102,105–108.
  238. PozoMJ,Azco´n-AguilarC,Dumas-GaudotE,BareaJM.1998. Chitosanase andchitinase activitiesin tomatorootsduring interactions with arbuscularmycorrhizalfungiorPhytophthoraparasitica.Journal  of  Experimental  Botany. 1998;49:1729–1739.
  239. SalzerP,BonanomiA,BeyerK,Vo¨geliLangeR,AeschbacherRA,LangJ,WiemkenA,KimD,CookDR,BollerT.2000.Differentialexpressionofeightchitinasegenesin Medicago truncatula roots during mycorrhiza formation,nodulation and pathogen infection. Molecular Plant–MicrobeInteractions.2000;13:763–777.
  240. Bray EA Plant responses to water deficit. Trends Plant Sci. 1997 ;2:48–54    
  241. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego, Calif.Auge_ RM (2001) Water relations, drought and vesicular-arbuscularmycorrhizal symbiosis. Mycorrhiza.2001; 11:3-42
  242. Ruiz-Lozano JM, Collados C, Barea JM, Azc_n R Arbuscular mycorrhizal symbiosis can alleviate drought-induced     nodule senescence in soybean plants. New            Phytol.2001b; 151:493–50
  243. Palma JM, Longa MA, del Rio LA, Arines J Superoxide dismutase in vesicular-arbuscular red clover plants. Physiol
  244. Plant.1993; 87:77–83.
  245. 245. Ruiz-Lozano JM, Azcon R Mycorrhizal colonization anddrought stress exposition as factors affecting nitrate reductaseactivity in lettuce plants. Agric Ecosyst Environ.1996; 60:175–181.
[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions