International Journal of Pharma and Bio Sciences
 
 
    ISSN 0975-6299
www.ijpbs.net


ORIGINAL RESEARCH ARTICLE
Int J Pharm Bio Sci Volume 12 issue 4, October - December, Pages:35-46

Antimicrobial activity of silver nanoparticles synthesized from fruit epicarp of Glycosmis pentaphylla(Funded Work)

Swapan Kumar Chowdhury, Nayan roy and Indrani mukherjee
DOI: http://dx.doi.org/10.22376/ijpbs.2021.12.4.b35-46
Abstract:

Our study aim is to characterize and assess the antimicrobial effect of silver nanoparticles (AgNPs) synthesized from the fruit epicarp of Glycosmis pentaphylla against few crops and human pathogens. Our study suggests a novel method for biosynthesis of silver nanoparticles from the epicarp of Glycosmis pentaphylla. The study confirms the ability of the fruit epicarp extract of Glycosmis pentaphylla for the biosynthesis of silver nanoparticles grown under in-vitro conditions. The green synthesis of AgNPs from (Ethyl alcohol) EtOH extracts of Glycosmis pentaphylla was performed through standard protocols. The synthesized AgNPs were confirmed by colour changes (green to brown) within <10 minutes and characterized by UV-visible spectral, SEM and TGA analysis (Scanning electron microscope, Thermal gravimetric analysis). Antimicrobial activities of the silver nanoparticles were performed by agar well diffusion method against crops pathogenic fungus and human pathogenic bacteria.  The highest antifungal activities of silver nanoparticles were found against Colletotrichum lindemuthianum and Alternaria alternata. The antibacterial activity was measured through the zone of inhibition against B. subtilis (18 mm), S. typhimurium (17.33 mm), S. mutans (17 mm) and E. coli (17 mm). The antimicrobial potential of AgNPs was determined by minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and minimum bactericidal concentration (MBC) tested against human and plant pathogens. In addition, AgNPs displayed the signi?cant synergistic antibacterial effect when it combined with Streptomycin and Ciprofloxacin in the ratio of 1:1. This eco-friendly, biocompatible and sustainable phytofabrication approach of bioactive AgNP synthesis is a progressive step towards various applications to control few crops (Chilli, and Tomato) and human pathogens in near future.

Keywords: Swapan Kumar Chowdhury, Nayan roy and Indrani mukherjee
Full HTML:

REFERENCES

 

1.          Droby S, (2006), Improving quality and safety of fresh fruits and vegetables after harvest by the use of biocontrol agents and natural materials. Acta Horticulura 709: 45-51.

https://doi.org/10.17660/ActaHortic. 2006. 709. 5

2.          Eni AO, Ibokunoluwa O, and Oranusi, U, (2010), Microbial quality of fruits and vegetables. African Journal of Food Science 4: 291-296. http://www.academicjournals.org/ajfs

3.          Kaweeteerawat C, Na Ubol P, Sangmuang S, Aueviriyavit S, Maniratanachote R, (2017), Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J. Toxicol. Environ. Health Part A, 80:23-24, 12761289, 

DOI: 10.1080/15287394.2017.1376727

4.          Kavyashree D, Shilpa CJ, Nagabhushana H, Daruka PB, Sreelatha GL, Sharma SC, Ashoka S,  Kumari AR, Premkumar HB, (2015), ZnO Superstructures as an antifungal for effective control of malassezia furfur, dermatologically prevalent yeast: prepared by Aloe Vera assisted combustion method. ACS Sustain. Chem. Eng. 3(6) : 1066–1080.

 https://doi.org/10.1021/sc500784p

5.          JogaiahS,  Abdelrahman MKM,   Hanumanthappa N,  Tran LSP, (2019), Ganoderma applanatum-mediated green synthesis of silver nanoparticles: Structural characterization, and in vitro and in vivo biomedical and agrochemical properties, Arab.j.chem.12(7):1108-1120.

https://doi.org/10.1016/j.arabjc.2017.12.002

6.          Mallmann EJJ,  Cunha FA ,  Castro BNMF,  Maciel AM,  Menezes EA ,  Fechine PBA, (2015), Antifungal activity of silver nanoparticles obtained by green synthesis. Rev. Inst. Med. Trop. Sao Paulo, 57:165-167. doi: 10.1590/S0036-46652015000200011

7.          Salem W ,  Leitner DR,  Zingl FG ,  Schratter G,  Prassl R,  Goessler W,  Reidl J ,  Schild S, (2015), Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int. J. Med. Microbiol., 305:85-95. https://doi.org/10.1016/j.ijmm.2014.11.005.

8.          Elgorban AM ,  ElSamawaty AM,  Yassin MA,  Sayed SR ,  Adil SF ,  Elhindi KM ,  Bakri M,  Khan  M, (2016), Antifungal silver nanoparticles: synthesis, characterization and biological evaluation. Agric. Environ. Biotechnol., 30: 56-62

https://doi.org/10.1080/13102818.2015.1106339

9.          Mei L, Lu Z, Zhang X, Li C, Jia Y, (2014), Polymer-Ag Nanocomposites with Enhanced Antimicrobial Activity against Bacterial Infection , ACS Appl. Mater. Interfaces 6:1581315821.

https://doi.org/10.1021/am502886m

10.       Kumar SK, Prokhorov E, Hernández I M, Mota-Morales JD, Vázquez-Lepe M, Kovalenko Y, Sanchez IC, Luna BG, (2015), Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions Eur. Polym. J. 67, 242–251. https://doi.org/10.1016/j.eurpolymj. 2015.03.066

11.       Pavoski G, StammBaldisserotto DL, Maraschin T, Wentz Brum LF, Sannto C dos, Santosa JHZ dos, Brandelli A, Galland GB, (2019), Silver nanoparticles encapsulated in silica: Synthesis, characterization and application as antibacterial fillers in the ethylene polymerization, Eur. Polym. J. 117, 38–54. https://doi.org/10.1016/j.eurpolymj. 2019.04.055

12.       Wang L, Hu C, Shao L (2017), The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12:1227-1249.  doi: 10.2147/IJN.S121956.

13.       Rauwel P ,  Rauwel E,  Ferdov S ,  Singh MP, (2015), Silver nanoparticles: synthesis, properties, and applications, Advances in Materials Science and Engineering, vol. 2015, ArticleID 624394, 2 pages, 2015. https://doi.org/10.1155/2015/624394

14.       Gupta R. K, Kumar V, Gundampati R. K, Malviya M, Hasan S H, Jagannadham M V (2017), Biosynthesis of silver nanoparticles from the novel strain of Streptomyces Sp. BHUMBU-80 with highly efficient electroanalytical detection of hydrogen peroxide and antibacterial activity.  J. Environ. Chem. Eng. 5:5624 –5635.  10.1016/j.jece.2017.09.029

15.       Loo YY, Rukayadil Y, Nor-Khaizura MAR, Kuan C H, Chieng BW, Nishibuchi M, (2018),  In vitro antimicrobial activity of green synthesized silver nanoparticles against selected Gram-negative food borne pathogens. Front. Microbiol. 9:1555.

 10.3389/fmicb.2018.01555.

16.       Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. (2015), Silver nanoparticles as potential antibacterial agents. Molecules. 20(5):8856-74. doi: 10.3390/molecules20058856.

17.       Guilger-Casagrande M and Lima R, (2019), Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 7:287.

doi: 10.3389/fbioe.2019.00287

18.       Ragaa A. HamoudaMervat H, Hussein, Rasha A, Abo-elmagd, Salwa S, Bawazir, (2019), Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium, Oscillatori alimnetica, Scientific Reports 9:13071.

 https://doi.org/10.1038/s41598-019-49444-y.

19.       Roy N, and Barik A, (2010), Green synthesis of silver nanoparticles from the unexploited weed resources, Int. J. Nanotech. Appl., 4(2): 95-101

20.       Roy N, Nag D, Chowdhury SK, (2015), Bottom up Phytofabrication of Silver Nanoparticles and Their Antimicrobial Activity, Biomaterial and Biomedicine, 5(37):1-14 doi: 10.5376/bb.2015.05.0037.

21.       Pirtarighat, S., Ghannadnia, M. & Baghshahi, S. (2019), Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J NanostructChem 9, 1–9

 https://doi.org/10.1007/s40097-018-0291-4.

22.       Bray HG, Thorpe WV (1954), Analysis of phenolic compounds of interest in metabolism, Method Biochem. Anal., 1:27-52.

https://doi.org/10.1002/9780470110171.ch2

23.       Zhishen J, Mengcheng T, Jianming W, (1999), Research on antioxidant activity of flavonoids from natural materials. Food Chem., 64:555-559, http://dx.doi.org/10.1016/S0308-8146(98)00102-2

24.       Trease GE, Evans WC, (1983), Textbook of pharmacognosy. BallieseTindall and Company Publisher, edn 12, London, pp. 343-383

25.       Harborne B, (1973), Phytochemical methods: a guide to modern techniques of plant analysis, Edn 2, Chapman & Hall, New York,  88-185

26.       Reddy MB, Love M, (1999), The impacts of food processing on the nutritional quality of vitamins and minerals. Adv. Exp. Med. Biol., 459:99-106, http://dx.doi.org/10.1007/978-1-4615-4853-9-7

27.       Day RA, Underwood AL, (1986), Quantitative analysis, Prentice-Hall publication, New Delhi, India .

28.       Ahmed, S., Saifullah, Ahmad, M., Swami, B. L., & Ikram, S. (2016), Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1), 1–7. doi:10.1016/j.jrras.2015.06.006.

29.       Jain, S., Mehata, M.S. Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and their Enhanced Antibacterial Property. Sci Rep 715867 (2017).

https://doi.org/10.1038/s41598-017-15724-8.

30.       Rautela, A., Rani, J. & Debnath (Das), M. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal SciTechnol 10, 5 (2019).

https://doi.org/10.1186/s40543-018-0163-z

31.       Loo, Y. Y., Rukayadi, Y., Nor-Khaizura, M.-A.-R., Kuan, C. H., Chieng, B. W., Nishibuchi, M., &Radu, S. (2018). In Vitro Antimicrobial Activity of Green Synthesized Silver Nanoparticles Against Selected Gram-negative Foodborne Pathogens. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.01555.

32.       Lotfy WA, Alkersh BM, Sabry SA and Ghozlan HA (2021) Biosynthesis of Silver Nanoparticles by Aspergillus terreus: Characterization, Optimization, and Biological Activities. Front. Bioeng. Biotechnol. 9:633468.doi: 10.3389/fbioe.2021.633468.

33.       Sanchooli, N., Saeidi, S., Barani, H. K., & Sanchooli, E. (2018). In vitro antibacterial effects of silver nanoparticles synthesized using Verbena officinalis leaf extract on Yersinia ruckeri, Vibrio cholera and Listeria monocytogenes. Iranian journal of microbiology, 10(6), 400–408.

34.       Thomas R, Nair AP, Kr S, Mathew J, Ek R. (2014), Antibacterial activity and synergistic effect of biosynthesized AgNPs with antibiotics against multidrug-resistant biofilm-forming coagulase-negative staphylococci isolated from clinical samples. Appl Biochem Biotechnol. 173(2) : 449-60. doi: 10.1007/s12010-014-0852-z. Epub 2014 Apr 4. PMID: 24699812.

35.       Vijayakumar S, Krishnakumar C, Arulmozhi P, Mahadevan S, Parameswari N. (2018),  Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microb Pathog. 116:44-48. 

36.       Zar, J.H.: (1999), Biostatistical Analysis. Prentice Hall, Englewood Cliffs

37.       Parvekar, P., Palaskar, J., Metgud, S., Maria, R., & Dutta, S. (2020). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial Investigations in Dentistry, 7(1), 105–109.

38.       Sastry M, Mayya KS, Bandyopadhyay K, (1997), pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids Surf A Physicochem Eng Asp 127:221–228. https://doi.org/10.1016/S0927-7757(97)00087-3

39.       Sastry M, Patil V, Sainkar SR (1998) Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. Phys Chem B102:1404–1410. https://doi.org/10.1021/jp9719873.

40.       S. S. Birla, S. C. Gaikwad, A. K. Gade, and M. K. Rai, (2013), “Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions,” The Scientific World Journal, vol. Article ID 796018, 2013.

41.       A. M. Elgorban, A. N. Al-Rahmah, S. R. Sayed, A. Hirad, A. A.-F. Mostafa, and A. H. Bahkali, (2016) “Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride,” Biotechnology & Biotechnological Equipment, vol. 30, no. 2, pp. 299–304.

42.       J. L. Clement and P. S. Jarrett, (1994), “Antibacterial silver,” Metal-Based Drugs, vol. 1, no. 5-6, pp. 467–482,

43.       K. Anandalakshmi, J. Venugobal, and V. Ramasamy, “Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity,” Applied Nanoscience, vol. 6, no. 3, pp. 399–408, 2016.

44.       K.-J. Kim, W. S. Sung, B. K. Suh et al., “Antifungal activity and mode of action of silver nano-particles on Candida albicans,” Biometals, vol. 22, no. 2, pp. 235–242, 2009.

45.       M. Kasithevar, M. Saravanan, P. Prakash et al., “Green synthesis of silver nanoparticles using Alysicar pusmonilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients,” Journal of Interdisciplinary Nanomedicine, vol. 2, no. 2, pp. 131–141, 2017.View at: Publisher Site | Google Scholar

46.       S.-W. Lee, S.-H. Chang, Y.-S. Lai et al., (2014) “Effect of temperature on the growth of silver nanoparticles using plasmon-mediated method under the irradiation of green LEDs,” Materials, vol. 7, no. 12, pp. 7781–7798,.

47.       S. Zada, A. Ahmad, S. Khan et al., “Biogenic synthesis of silver nanoparticles using extracts of Lepto lyngbya JSC-1 that induce apoptosis in HeLa cell line and exterminate pathogenic bacteria,” Artificial Cells, Nanomedicine, and Biotechnology, vol. 46, no. 3, pp. S471–S480, 2018.View at: Publisher Site | Google Scholar

48.       R. Tripathi, R. K. Gupta, A. Shrivastav, M. P. Singh, B. Shrivastav, and P. Singh, (2013), “Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 4, no. 3, Article ID 035005.

49.       S. Devi and V. Bhimba, (2014), “Antibacterial and antifungal activity of silver nanoparticles synthesized using Hypnea muciformis,” Biosciences, Biotechnology Research Asia, vol. 11, pp. 235–238,

 View at: Publisher Site | Google Scholar

50.       J. E. Mendes, L. Abrunhosa, J. E. Teixeira, E. R. De Camargo, C. P. De Souza, and J. D. C. Pessoa, “Antifungal activity of silver colloidal nanoparticles against phytopathogenic fungus (Phomopsis sp.) in soybean seeds,” International Journal of Biological, Veterinary, Agricultural and Food Engineering, vol. 8, no. 9, pp. 928–933, 2014.

51.       Bera RK, Mandal SM, Raj CR. (2014), Antimicrobial activity of fluorescent Ag nanoparticles. Lett Appl Microbiol. ; 58:520 –526. doi: 10.1111/lam.12222.

52.       Balakumaran M. D., Ramachandran R., Kalaicheilvan  P. T. (2015).  Exploitation of endophytic fungus, Guignardiama ngiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities.  Microbiol. Res. 178, 9–17. 10.1016/j.micres.2015.05.009 

53.       Shrouaq Al-Zubaidi, Aisha Al-Ayafi, Hayam Abdelkader, (2019), Biosynthesis, Characterization and Antifungal Activity of Silver Nanoparticles by Aspergillus niger Isolate. Journal of Nanotechnology Research 1, 023-036.

54.       AbdelkaderH, Alzahrani H, Al-Ayafi A, Al-Mulah H, Al-Zubaidi S. (2019), Green synthesis, Characterization and Antimicrobial activity of Biosynthesized Silver Nanoparticles using Ziziphusspina-christi leaf extracts. AdvMicrob Res 3: 010.

55.       Feng QL, Wu J, Chen GQ (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52: 662-668. https://doi.org/10.1002/1097-4636 (20001215) 52:4 <662:: AID-JBM10>3.0.CO;2-3

56.       Yamanaka M, Hara K, Kudo J, (2005),  Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71 7589-7593.

doi: 10.1128/AEM.71.11.7589-7593.2005

57.       Leung YH, Ng AM, Xu X, et al. Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small. 2014;10(6):1171–1183.

58.       Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lin M, (2018), Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities Colloids and Surfaces B: Biointerfaces171:398-405 doi:https://doi.org/10.1016/j.colsurfb.2018.07.059

59.       Griffith M, Udekwu KI, Gkotzis S, Mah T-F, Alarcon EI (2015) Anti-microbiological and anti-infective activities of silver. In: Silver Nanoparticle Applications. Springer, pp 127-146

60.       Cui, H., Zhang, C., Li, C., and Lin, L. (2018). Antimicrobial mechanism of clove oil on Listeria monocytogenesFood Control 94, 140–146. doi: 10.1016/j.foodcont.2018.07.007

61.       Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS, (2012), Antifungal effects of silver nanoparticles (AgNPs ) against various plant pathogenic fungi. Mycobio.,40:53–58.doi: 10.5941/MYCO.2012.40.1.053

62.       Singh K, Panghal M, Kadyan S, Chaudhary U, and Yadav JP (2014) Antibacterial activity of synthesized silver nanoparticles from Tinospora cordifolia against multi drug resistant strains of Pseudomonas aeruginosa isolated from burn patients. J. Nanomed. Nanotechnol., 5: 192, doi:10.4172/2157-7439.1000192

63.       Chodappa P, Gowda S, Chethana CS, Madhura S, (2014), Atifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. Asian J. Microb. Res., 8(17): 1803-1812, DOI: 10.5897/AJMR2013.6584 

64.       Sotiriou GA, Pratsinis SE (2010), Antibacterial activity of nanosilver ions and particles. Environ. Sci. Technol. 44: 5649– 5654.doi: 10.1021/es101072s.

65.       Liau S, Read D, Pugh W, Furr J, Russell A, (1997), Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25, 279–283.https://doi.org/10.1046/j.1472-765X.1997.00219.x

66.       BatarsehK I., (2004), Anomaly and correlation of killing in the therapeutic properties of silver (I) chelation with glutamic and tartaric acids. J. Antimicrob. Chemother.54(2):546 548,

 https://doi.org/10.1093/jac/dkh349

67.       Li P, Li J, Wu C, Wu Q, Li J (2005), Synergistic antibacterial effects of β-lactam antibiotic combined with silver  nanoparticles. Nanotechnology.16: 1912.https://doi.org/10.1088/0957-4484/16/9/082

 

 

 

[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions