International Journal of Pharma and Bio Sciences
 
 
    ISSN 0975-6299
www.ijpbs.net


ORIGINAL RESEARCH ARTICLE
Int J Pharm Bio Sci Volume 13 Issue 1, January - March, Pages:37-43

Bio-Efficacy of Hexadecanoic Acid on Larvicidal, Pupicidal and Repellent Activities against Malarial Vector, Anopheles Stephensi (Liston). (Diptera: Culicidae)

Junaid Hassan and Arulsamy Jebanesan
DOI: http://dx.doi.org/10.22376/ijpbs.2022.13.1.B37-43
Abstract:

Mosquitoes have an important role in spreading the deadly diseases such as malaria, Japanese encephalitis, dengue and filariasis etc. Malaria is the most vulnerable public health problem of present time. Malaria is caused by malarial parasite plasmodium falciparum and is one of the leading causes of human morbidity and mortality from infectious disease, predominantly in tropical and sub-tropical countries. Chemicals involved in insect communication are called Semiochemicals. Semiochemicals are organic compounds used by insects to convey specific chemical messages that modify behaviour or physiology. Semiochemicals are used as fastest growing materials due to their unique physical, chemical and biological properties. Hexadecanoic acid is a novel semiochemical which was not fully evaluated against the malarial vector Anopheles stephensi. The aim and objective of the present study was to evaluate the bio-efficacy of Hexadecanoic acid against the malarial vector Anopheles stephensi. Hexadecanoic acid was screened to assess Larvicidal, efficacy against the 3rd instar larvae and pupicidal activity at different concentrations ranging from 5-45 ppm against malarial vector Anopheles stephensi after 24h .The repellent activity was also assessed against An. stephensi at three different concentrations viz., 1.0, 2.0 and 4.0 mg/cm2 of treatment after 24h under the laboratory conditions. The compound was found to be effective against the mosquito. The LC50 and LC90 values for larvicidal bio-assay were 16.309, 28.624 ppm and for pupicidal bio-assay 30.311, 42.776 ppm respectively. Hexadecanoic acid also showed higher repellency with the increase in concentration. The highest repellency was observed at a concentration of 4.0mg/cm2 provided 100 percent protection up to 120 min against An. stephensi. Hence the results revealed that the Hexadecanoic acid is potential compound for controlling the vector mosquito.

Keywords: Semio chemical, Hexadecanoic Acid, An. Stephensi, Malaria
Full HTML:

References

  1. Benelli G, Mehlhorn H. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res. 2016;115(5):1747-54. doi: 10.1007/s00436-016-4971-z, PMID 26932263.
  2. Baranitharan M, Dhanasekaran S, Murugan K, Koendan K, Gokulakrishnan J, Jeyasankar A. Experimental investigations of Nagapattinam indigenous medicinal plant extracts against dengue, malaria and filarial disease. Int J Zool Appl Biosci. 2017;2:155-61.
  3. Balasubramanian J, Subramanian S, Kaliyan V. Effect of Chloroxylon swietenia Dc bark extracts against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi larvae. Parasitol Res. 2015;114(11):4219-23. doi: 10.1007/s00436-015-4658-x, PMID 26246308.
  4. Sanei-Dehkordi A, Sedaghat MM, Vatandoost H, Abai MR. Chemical compositions of the peel essential oil of Citrus aurantium and its natural larvicidal activity against the malaria vector Anopheles stephensi (Diptera: culicidae) in comparison with Citrus paradisi. J Arthropod Borne Dis. 2016;10(4):577-85. PMID 28032110.
  5. Hanafi-Bojd AA, Vatandoost H, Oshaghi MA, Haghdoost AA, Shahi M, Sedaghat MM, Abedi F, Yeryan M, Pakari A. Entomological and epidemiological attributes for malaria transmission and implementation of vector control in southern Iran. Acta Trop. 2012;121(2):85-92. doi: 10.1016/j.actatropica.2011.04.017, PMID 21570940.
  6. Mittal PK, Adak T, Subbarao SK. Inheritance of resistance to Bacillus sphaericus toxins in a laboratory selected strain of An. Stephensi (Diptera: culicidae) and its response to Bacillus thuringiensis var. israelensis. Curr Sci. 2005;89:442-3.
  7. Sumitha KV, Thoppil JE. Larvicidal efficacy and chemical constituents of O. gratissimum L. (Lamiaceae) essential oil against Aedes albopictus Skuse (Diptera: culicidae). Parasitol Res. 2016;115(2):673-80. doi: 10.1007/s00436-015-4786-3, PMID 26462801.
  8. Karunamoorthi K, Ilango K. Larvicidal activity of Cymbopogon citratus (DC) Stapf. and Croton macrostachyus Del. against Anopheles arabiensis Patton, a potent malaria vector. Eur Rev Med Pharmacol Sci. 2010;14(1):57-62. PMID 20184090.
  9. Redwane A, Lazrek HB, Bouallam S, Markouk M, Amarouch H, Jana M. Larvicidal activity of extracts from Quercus lusitania var. infectoria galls (Oliv.). J Ethnopharmacol. 2002;79(2):261-3. doi: 10.1016/s0378-8741(01)00390-7, PMID 11801390.
  10. Liu XC, Liu Q, Chen XB, Zhou L, Liu ZL. Larvicidal activity of the essential oil from Tetradium glabrifolium fruits and its constituents against Aedes albopictus. Pest Manag Sci. 2015;71(11):1582-6. doi: 10.1002/ps.3964, PMID 25504672.
  11. Horowitz R, Ellsworth PC, Ishaaya I. Biorational pest control-an overview. In: Ishaaya I, Orowitz AR, editors: Biorational control of arthropod pests. Springer science + business media B. V. Springer Netherlands; 2009. doi: 10.1007/978-90-481-2316-2_1.
  12. Zwenger S, Basu C. Plant terpenoids: applications and future potentials. Biotechnol Mol Biol Rev. 2008;3:1-7.
  13. Butler JF. Use of an olfactometer for determining attractants and repellents. In: Debboun S, Frances SP, Strickman D, editors, Insect repellents: principles, methods and uses. New York: CRC Press Press, Taylor & Francis Group; 2006. p. 161-94.
  14. Senthilkumar A, Jayaraman M, Venkatesalu V. Chemical constituents and larvicidal potential of Feronia limonia leaf essential oil against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Parasitol Res. 2013;112(3):1337-42. doi: 10.1007/s00436-012-3188-z, PMID 23160893.
  15. Zayed MZ, Ahmad FB, Ho WS, Pang SL. GC-MS analysis of phytochemical constituents in leaf extracts of Neolamarckia cadamba (Rubiaceae) from Malaysia. Int J Pharm Pharm Sci. 2014;6:123-7.
  16. World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/ 2005.13. Geneva: WHO; 2005. p. 69.
  17. Finney DJ. Probit analysis. Cambridge: Cambridge University Press; 1979. p. 68-72.
  18. WHO. Report of the WHO informal consultation on the evaluation and testing of insecticides. Catching the Dream/WHOPES /IC/96. Geneva: WHO; 1996. p. 69.
  19. Abbott WS. A Method of Computing the Effectiveness of an Insecticide. J Econ Entomol. 1925;18(2):265-7. doi: 10.1093/jee/18.2.265a.
  20. WHO. World Health Organization. Geneva, Switzerland: World Health Organization; 2009. Guidelines for efficacy testing of mosquito repellents for human skin. Control of neglected tropical diseases.
  21. Mathalaimuthu B, Shanmugam D, Kovendan K, Kadarkarai M, Jayapal G, Benelli G. Coleus aromaticus leaf extract fractions: A source of novel ovicides, larvicides and repellents against Anopheles , Aedes and Culex mosquito vectors? Process Safety and Environmental Protection. 2017;106:23-33. doi: 10.1016/j.psep.2016.12.003.
  22. Muthu C, Reegan AD, Kingsley S, Ignacimuthu S. Larvicidal activity of pectolinaringenin from Clerodendrum phlomidis L. against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: culicidae). Parasitol Res. 2012;111(3):1059-65. doi: 10.1007/s00436-012-2932-8, PMID 22562213.
  23. Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B. Effect of Feronia limonia on mosquito larvae. Fitoterapia. 2000;71(5):553-5. doi: 10.1016/s0367-326x(00)00164-7, PMID 11449505.
  24. Ravi Kiran S, Bhavani K, Sita Devi P, Rajeswara Rao BR, Janardhan Reddy K. Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour Technol. 2006;97(18):2481-4. doi: 10.1016/j.biortech.2005.10.003, PMID 16815011.
  25. Pradeepa V, Sathish-Narayanan S, Kirubakaran SA, Senthil-Nathan S. Antimalarial efficacy of dynamic compound of plumbagin chemical constituent from Plumbago zeylanica Linn (Plumbaginaceae) against the malarial vector Anopheles stephensi Liston (Diptera: culicidae). Parasitol Res. 2014;113(8):3105-9. doi: 10.1007/s00436-014-4015-5, PMID 25028206.
  26. Govindarajan M, Rajeswary M, Hoti SL, Benelli G. Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Res Vet Sci. 2016;104:77-82. doi: 10.1016/j.rvsc.2015.11.011, PMID 26850541.
  27. Govindarajan M, Rajeswary M, Benelli G. δ-Cadinene, Calarene and .δ-4-Carene from Kadsura heteroclita Essential Oil as Novel Larvicides Against Malaria, Dengue and Filariasis Mosquitoes. Comb Chem High Throughput Screen. 2016;19(7):565-71. doi: 10.2174/1386207319666160506123520, PMID 27151483.
  28. Kovendan K, Murugan K, Vincent S, Barnard DR. Studies on larvicidal and pupicidal activity of Leucas aspera Willd. (Lamiaceae) and bacterial insecticide, Bacillus sphaericus, against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). Parasitol Res. 2012;110(1):195-203. doi: 10.1007/s00436-011-2469-2, PMID 21626422.
  29. Ragavendran C, Natarajan D. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. Environ Sci Pollut Res Int. 2015;22(21):17224-37. doi: 10.1007/s11356-015-4961-1, PMID 26139412.
  30. Prabakaran G, Hoti SL, Rao HSP, Vijjapu S. Di-rhamnolipid is a mosquito pupicidal metabolite from Pseudomonas fluorescens (VCRC B426). Acta trop. 2015;148:24-31. doi: 10.1016/j.actatropica.2015.03.003, PMID 25912083.
  31. Vivekanandhan P, Karthi S, Shivakumar MS, Benelli G. Synergistic effect of entomopathogenic fungus Fusarium oxysporum extract in combination with temephos against three major mosquito vectors. Pathog Glob Health. 2018;112(1):37-46. doi: 10.1080/20477724.2018.1438228, PMID 29457957.
  32. Vivekanandhan P, Senthil-Nathan S, Shivakumar MS. Larvicidal, pupicidal and adult smoke toxic effects of Acanthospermum hispidum (DC) leaf crude extracts against mosquito vectors. Physiol Mol Plant Pathol. 2018;101:156-62. doi: 10.1016/j.pmpp.2017.05.005.
  33. Magesh D, Ganesan P, Balakrishna K, Milton MJ. Efficacy of Acalypha fruticosa (Eurphorbiaceae) extracts as mosquito ovicidal, larvicidal and pupicidal agents against three vector Mosquitos Aedes aegypti L., Culex quinquefasciatus Say. and Anopheles stephensi Liston.(Diptera: culicidae). Uttar Pradesh J Zool. 2020:11-9.
  34. Sivakumar R, Jebanesan A, Govindarajan M, Rajasekar P. Oviposition attractancy of dodecanoic, hexadecanoic and tetradecanoic acids against Aedes aegypti and Culex quinquefasciatus (Diptera: culicidae). Eur Rev Med Pharmacol Sci. 2011;15(10):1172-5. PMID 22165678.
  35. Deepa M, Palanisamy K, Krishnappa K, Elumalai K. Mosquitocidal activity of Polygala arvensis Willed against Aedes aegypti (Linn.), Anopheles stephensi (Liston.) and Culex quinquefasciatus (Say.) (Diptera: culicidae). Int J Mosq Res. 2014;1:30-4.
  36. Reegan AD, Kinsalin AV, Paulraj MG, Ignacimuthu S. Larvicidal, ovicidal and repellent activities of marine sponge Cliona celata (Grant) extracts against Anopheles stephensi Liston (Diptera: culicidae). Asian Pac J Trop Med. 2015;8(1):29-34. doi: 10.1016/S1995-7645(14)60183-8, PMID 25901921.
  37. Tahghighi A, Maleki-Ravasan N, Dinparast Djadid ND, Alipour H, Ahmadvand R, Karimian F, Yousefinejad S. GC–MS analysis and anti–mosquito activities of Juniperus virginiana essential oil against Anopheles stephensi (Diptera: culicidae). Asian Pac J Trop Biomed. 2019;9(4):168. doi: 10.4103/2221-1691.256730.
  38. Pirmohammadi M, Shayeghi M, Abai MR, Vatandoost H, Rahimi S, Barghamadi Z 2020. Chemical composition and repellency effect of Ferulago angulate plant against malaria vector. Anopheles stephensi.
  39. Fouda A, Awad MA, Eid AM, Saied E, Barghoth MG, Hamza MF, Awad MF, Abdelbary S, Hassan SE. An eco-friendly approach to the control of pathogenic microbes and Anopheles stephensi malarial vector using magnesium oxide nanoparticles (Mg-NPs) fabricated by Penicillium chrysogenum. Int J Mol Sci. 2021;22(10):5096. doi: 10.3390/ijms22105096, PMID 34065835.
[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions