International Journal of Pharma and Bio Sciences
 
 
    ISSN 0975-6299
www.ijpbs.net


ORIGINAL RESEARCH ARTICLE
Int J Pharm Bio Sci Volume 13 Issue 4, October - December, Pages:7-15

 A Systematic Review On Novel Twincretin; Tirzepatide in Treatment of Type-II Diabetes Mellitus.

Dr. Avula Naveen ,Dr. Mr Sravani and Dr .Syed Ilias Basha3
DOI: http://dx.doi.org/10.22376/Ijpbs.2022.13.4.P7-15
Abstract:

Type 2 Diabetes Mellitus(T2DM) is a chronic progressive disease characterized by hyperglycemia and progressive dysregulation leading to microvascular and macrovascular complications. Glucagon-like peptide 1 (GLP-1) based therapy is an established treatment option for the management of type 2 diabetes mellitus (T2DM) and is recommended early in the treatment algorithm owing to glycaemic efficacy, weight reduction, and favourable cardiovascular outcomes. A glucose-dependent insulinotropic polypeptide (GIP), on the other hand, was thought to have no potential as a glucose-lowering therapy because of observations showing no insulinotropic effect from supraphysiological infusion in people with T2DM. However, emerging evidence has illustrated that, co-administration of GLP-1 and GIP has a synergistic effect, resulting in significantly increased insulin response and glucagonostatic response, compared with separate administration of each hormone. These observations have led to developing a dual GIP/GLP-1 receptor agonist, known as a ‘twincretin’ called Tirzepatide. In this paper, we have reviewed different clinical trials to evaluate the efficacy and safety of Tirzepatide over conventional antidiabetic drugs like Metformin and newer GLP1-receptor agonists in the treatment of T2DM. We consider the reduction of glycated hemoglobin (HbA1C) and body weight as our objectives in our study. In May 2022, FDA approved Tirzepatide for the treatment of T2 DM, which is a novel dual GIP/GLP-1 receptor agonist formulated as a synthetic peptide containing 39 amino acids, based on the native GIP sequence.  The newly approved drug has shown excellent results in lowering blood glucose and weight loss. Pre-clinical trials and Phase 1, Phase 2, and Phase 3  clinical trials compared Tirzepatide vs Placebo or  GLP-1 receptor agonists which concluded that Tirzepatide potent glucose-lowering and weight loss causing agent with adverse effects comparable to those of established GLP-1 receptor agonists. It is too early to comment on the long-term efficacy, safety, and cardiovascular outcomes of tirzepatide.

Keywords: Tirzepatide, Glucagon-Like Peptide 1; Gastric Inhibitory Peptide; Incretin Hormone; Type 2 Diabetes Mellitus.
Full HTML:
  1. Saeedi, P,Petersohn, I, Salpea, P, Malanda B, Karuranga, S, Unwin N et al.”‘”Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045”. Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 7843.
  2. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. “Years lived with disability(YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010.” Lancet. 2013,380 (9859): 2163–2196.
  3. Nauck MA, Meier JJ. Incretin hormones: their role in health and disease. Diabetes Obes Metab.2018, 20:5–21.
  4. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology.2007, 132(6):2131–2157
  5. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006; 368: 1696– 1705.
  6. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest .1993; 91: 301– 307.
  7. Meier JJ, Hucking K, Holst JJ, Deacon CF, Schmiegel WH, Nauck MA. Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes.2001; 50: 2497– 2504.
  8. Tsapas A, Avgerinos I, Karagiannis T et al. Comparative effectiveness of glucose-lowering drugs for type 2 diabetes: a systematic review and network meta-analysis. Ann Intern Med.2020, 173(4):278–286.
  9. Alexander JT, Staab EM, Wan W et al. The longer-term benefits and harms of glucagon-like peptide-1 receptor agonists: a systematic review and meta-analysis. J Gen Intern Med.2021, 37(2):415– 438.
  10. Bastin M, Andreelli F. Dual GIP-GLP1-receptor agonists in the treatment of type 2 diabetes: a short review on emerging data and therapeutic potential. Diabetes MetabSyndr Obes.2019, 12:1973–1985.
  11. Asmar M, Simonsen L, Asmar A, Holst JJ, Dela F, Bülow J. Insulin plays a permissive role for the vasoactive effect of GIP regulating adipose tissue metabolism in humans. J ClinEndocrinol Metab.2016, 101(8):3155–3162.
  12. Coskun T, Sloop KW, Loghin C et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab.2018, 18:3–14.
  13. Thomas MK, Nikooienejad A, Bray R et al.Dual GIP and GLP-1 receptor agonist tirzepatide improves beta-cell function and insulin sensitivity in type 2 diabetes. J ClinEndocrinol Metab.2021,106(2):388–396.
  14. Min T, Bain SC. The role of tirzepatide, dual GIP and GLP-1 receptor agonist, in the management of Type 2 diabetes: the SURPASS clinical trials. Diabetes Ther.2021, 12(1):143–157.
  1. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512.
  2. Elrick H, Stimmler L, Hlad CJ Jr, Arai Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab. 1964;24:1076–82.
  3. 17.Creutzfeldt W. The incretin concept today. Diabetologia. 1979;16(2):75–85.
  4. Nauck MA, Homberger E, Siegel EG, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986;63(2):492–8.
  5. Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol. 2016;4(6):525–36.
  6. 20.Takeda J, Seino Y, Tanaka K, Fukumoto H, Kayano T, Takahashi H, Mitani T, Kurono M, Suzuki T, Tobe T. Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor. Proc Natl Acad Sci USA. 1987;84:7005–7008.
  7. Brown JC, Dryburgh JR, Ross SA, Dupré J. Identification and actions of gastric inhibitory polypeptide. Recent Prog Horm Res. 1975;31:487–532. 128084
  8. 22.Dupre J, Ross SA, Watson D, Brown JC. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab. 1973;37:826–828.
  9. 23.Willms B, Werner J, Holst JJ, Orskov C, Creutzfeldt W, Nauck MA. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1(7–36) amide in type 2 diabetic patients. J Clin Endocrinol Metab. 1996;81:327–332.
  10. 24.Komatsu R, Matsuyama T, Namba M, Watanabe N, Itoh H, Kono N, Tarui S. Glucagonostatic and insulinotropic action of glucagonlike peptide I-(7–36)-amide. Diabetes. 1989;38:902–905.
  11. 25.Prigeon RL, Quddusi S, Paty B, D’Alessio DA. Suppression of glucose production by GLP-1 independent of islet hormones: a novel extrapancreatic effect. Am J Physiol Endocrinol Metab. 2003;285:E701–E707.
  12. Farilla L, Hui H, Bertolotto C, Kang E, Bulotta A, Di Mario U, Perfetti R. Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology. 2002;143:4397–4408.
  13. Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology. 2000;141:4600–4605.
  14. 28.Wang X, Cahill CM, Piñeyro MA, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 regulates the beta cell transcription factor, PDX-1, in insulinoma cells. Endocrinology. 1999;140:4904–4907.
  15. 29.Holz GG, 4th, Kühtreiber WM, Habener JF. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7–37) Nature. 1993;361:362–365.
  16. Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002;359:824–830.
  1. Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab. 2001;86(8):3717–23.
  2. 32.Calanna S, Christensen M, Holst JJ, et al. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia. 2013;56(5):965–72.
  3. Vilsboll T, Krarup T, Sonne J, et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab. 2003;88(6):2706–13.
  4. Vilsboll T, Krarup T, Madsbad S, Holst JJ. Defective amplification of the late phase insulin response to glucose by GIP in obese type II diabetic patients. Diabetologia. 2002;45(8):1111–9.
  5. 35.Chia CW, Carlson OD, Kim W, et al. Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes. Diabetes. 2009;58(6):1342–9.
  6. 36.Hojberg PV, Vilsboll T, Rabol R, et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia. 2009;52(2):199–207.
  7. 37.Elahi D, McAloon-Dyke M, Fukagawa NK, et al. The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7–37) in normal and diabetic subjects. Regul Pept. 1994;51(1):63–74
  8. 38.Finan B, Ma T, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med. 2013;5(209):209ra151.
  1. Bhagavathula AS, Vidyasagar K, Tesfaye W. Efficacy and Safety of Tirzepatide in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Phase II/III Trials. Pharmaceuticals (Basel). 2021;14(10):991.

 

  1. Coskun T, Sloop KW, Loghin C, et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. MolMetab.2018;18:3–14.
  2. Ohwaki K, Furihata K, Mimura M, Oura T, Imaoka T. 1024-P: effect of tirzepatide, a dual GIP and GLP1 receptor agonist, on glycemic control and body weight in Japanese patients with T2DM. Diabetes.2019;68(Supplement 1).
  3. Frias JP, Nauck MA, Van J, et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet.2018;392(10160):2180–93.
  4. Frias JP, Nauck MA, Van J, et al. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: a 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diabetes ObesMetab.2020;22(6):938–46
  5. 44.Rosenstock J., Wysham C., Frías J.P., Kaneko S., Lee C.J., FernándezLandó L., Mao H., Cui X., Karanikas C.A., Thieu V.T. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): A double-blind, randomised, phase 3 trial. Lancet.2021;398:143–155.
  6. Min T, Bain SC. The Role of Tirzepatide, Dual GIP and GLP-1 Receptor Agonist, in the Management of Type 2 Diabetes: The SURPASS Clinical Trials.Diabetes Ther. 2021,12(1):143-157.
  7. ClinicalTrial.gov. A study of tirzepatide (LY3298176) in participants with obesity or overweight (SURMOUNT-1). https://clinicaltrials.gov/ ct2/show/NCT04184622. 2019. Accessed 20 Nov 20.
  8. ClincalTrial.gov. A study of tirzepatide (LY3298176) in participants with nonalcoholic steatohepatitis(NASH)(SYNERGY-NASH).https://clinicaltrials.gov/ct2/show/NCT04166773. 2019. Accessed 20 Nov 20.
  9. Sun, F.; Chai, S.; Yu, K.; Quan, X.; Yang, Z.; Wu, S.; Zhang, Y.; Ji, L.; Wang, J.; Shi, L. Gastrointestinal adverse events of glucagonlike peptide-1 receptor agonists in patients with type 2 diabetes: A systematic review and network meta-analysis. Diabetes Technol.Ther. 2015, 17, 35–42.
  10. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2019. Diabetes  Care. 2019, 42, S90–S102.
  11. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021, 44, S111–S124.
  12. Gault, V.A.; Kerr, B.D.; Harriott, P.; Flatt, P.R. Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type 2 diabetes and obesity. Clin. Sci. 2011, 121, 107–117.
  13. Frías, J.P.; Davies, M.J.; Rosenstock, J.; Pérez Manghi, F.C.; FernándezLandó, L.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 503–515.
  14. A Study of Tirzepatide (LY3298176) Versus Insulin Lispro (U100) in Participants with Type 2 Diabetes Inadequately Controlled on Insulin Glargine (U100) with or without Metformin (SURPASS-6). Available online: https://clinicaltrials.gov/ct2/show/NCT045 37923 (accessed on 31 August 2021).
  15. A Study of Tirzepatide (LY3298176) in Participants with Type 2 Diabetes Who Have Obesity or Are Overweight (SURMOUNT-2). Available online: https://clinicaltrials.gov/ct2/show/NCT04657003 (accessed on 31 August 2021).
  16. A Study of Tirzepatide (LY3298176) Compared with Dulaglutide on Major Cardiovascular Events in Participants with Type 2 Diabetes (SURPASS-CVOT). 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04255433 (accessed on 31 August 2021).
  17. Aroda VR, Ahmann A, Cariou B, et al. Comparative efficacy, safety, and cardiovascular outcomes with once-weekly subcutaneous semaglutide in the treatment of type 2 diabetes: insights from the SUSTAIN 1–7 trials. Diabetes Metab.2019;45(5): 409–18).
  18. Frias JP, Guja C, Hardy E, et al. Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol.2016;4(12):1004–16).
  19. 58.133. Bhat V.K., Kerr B.D., Vasu S., Flatt P.R., Gault V.A. A DPP-IV-resistant triple-acting agonist of GIP, GLP-1 and glucagon receptors with potent glucose-lowering and insulinotropic actions in high-fat-fed mice. Diabetologia. 2013;56:1417–1424.
  20. Finan B., Yang B., Ottaway N., Smiley D.L., Ma T., Clemmensen C., Chabenne J., Zhang L., Habegger K.M., Fischer K., et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 2015;21:27–36.
  21. 60.Jall S., Sachs S., Clemmensen C., Finan B., Neff F., DiMarchi R.D., Tschöp M.H., Müller T.D., Hofmann S.M. Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice. Mol. Metab. 2017;6:440–446.
  22. Brandt S.J., Götz A., Tschöp M.H., Müller T.D. Gut hormone polyagonists for the treatment of type 2 diabetes. Peptides. 2018;100:190–201.
  23. Capozzi ME, DiMarchi RD, Tschöp MH, Finan B, Campbell JE. Targeting the incretin/glucagon system with triagonists to treat diabetes. Endocrine reviews. 2018 Oct;39(5):719-38.
  24. Krempf M, Farnier M. Obesity and cardiovascular risk. InAnnales D'endocrinologie 2001 Sep 1 (Vol. 62, No. 4 Pt 2, pp. S23-9).
  25. Ajjan RA, Grant PJ. Cardiovascular disease prevention in patients with type 2 diabetes: The role of oral anti-diabetic agents. Diabetes and Vascular Disease Research. 2006 Dec;3(3):147-58.
  26. Frías JP, Davies MJ, Rosenstock J, Pérez Manghi FC, Fernández Landó L, Bergman BK, Liu B, Cui X, Brown K. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. New England Journal of Medicine. 2021 Aug 5;385(6):503-15.
  27. Bhagavathula AS, Vidyasagar K, Tesfaye W. Efficacy and safety of tirzepatide in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized phase II/III trials. Pharmaceuticals. 2021 Sep 28;14(10):991.
[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions