International Journal of Pharma and Bio Sciences
    ISSN 0975-6299

Int J Pharm Bio Sci Volume 14 Issue 1, January - March, Pages:1-9

A Review On Nanostructure Drug Carriers for Treatment and Management of Neuroendocrine Cancer

Avhipsha Kar, Dr. Gaurav Agarwal and Dr. Shilpi Agarwal
[Download PDF]

Neuroendocrine (NE) cancer is a tumour that develops from neuroendocrine cells, which release hormones into the bloodstream and regulate body function. Neuroendocrine cancer can alter the normal function of neuroendocrine cells. Conventional therapies have limitations for treating Neuroendocrine cancer cells which arise the need for specific nanocarriers that can target and enable the drug release in a sustainable and controllable manner. Nanocarriers like dendrimers, carbon nanotubes, liposomes, gold nanoparticles, solid lipid nanoparticles, quantum dots, polymer nanoparticles, magnetic nanoparticles, and hybrid nanoparticles have spatial and temporal delivery ability. Nanomaterial used in nanocarriers plays a vital role in the release rate of the drug, specific targeting, diagnostic purpose, and prolongation time. Besides, the specific targeting potential of nanocarriers leads to diminished side effects. Additionally, surface-modified nanomaterials may offer better antitumour effects in neuroendocrine cancer therapy. Hence, nanocarriers can be effectively employed for the management of neuroendocrine cancer with specific targeting and minimal side effects compared to conventional therapy. Recently, there has been a lot of concern about the creation of cancer nanotherapeutics. Cancer nanotherapeutics have circumvented a number of the drawbacks of conventional medicines, including poor water solubility, nonspecific biodistribution, and restricted bioavailability. The main building blocks of nanotherapeutics are nanoparticles with tailored size and surface properties that are intended to either passively or actively transport anti-cancer medications to tumour cells. The present study overviews current developments in cancer therapeutics based on tumour-targeting delivery methodologies and nanoparticle drug delivery systems.

Keywords: Neuroendocrine Cancer, Nanomaterials, Gold Nanoparticles, Dendrimers, Liposomes.Tumour Targeting, Cancer Treatment, Nanoparticles.
Full HTML:
  1. Juliano R. Nanomedicine: is the wave cresting? Nat Rev Drug Discov. 2013;12(3):171-2. doi: 10.1038/nrd3958, PMID 23449291.
  2. Bourzac K. Nanotechnology: carrying drugs. Nature. 2012;491(7425):S58-60. doi: 10.1038/491S58a, PMID 23320289.
  3. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310-6. doi: 10.1158/1078-0432.CCR-07-1441, PMID 18316549.
  4. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133-49. doi: 10.2147/IJN.S596, PMID 18686775.
  5. Ruponen M, Honkakoski P, Rönkkö S, Pelkonen J, Tammi M, Urtti A. Extracellular and intracellular barriers in non-viral gene delivery. J Control Release. 2003;93(2):213-7. doi: 10.1016/j.jconrel.2003.08.004, PMID 14636726.
  6. Yang SY, Zheng Y, Chen JY, Zhang QY, Zhao D, Han DE, et al. Comprehensive study of cationic liposomes composed of DC-Chol and cholesterol with different mole ratios for gene transfection. Colloids Surf B Biointerfaces. 2013;101:6-13. doi: 10.1016/j.colsurfb.2012.05.032, PMID 22789783.
  7. Ito I, Ji L, Tanaka F, Saito Y, Gopalan B, Branch CD, et al. Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo. Cancer Gene Ther. 2004;11(11):733-9. doi: 10.1038/sj.cgt.7700756, PMID 15486560.
  8. Lu C, Stewart DJ, Lee JJ, Ji L, Ramesh R, Jayachandran G, et al. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLOS ONE. 2012;7(4):e34833. doi: 10.1371/journal.pone.0034833, PMID 22558101.
  9. Suzuki R, Namai E, Oda Y, Nishiie N, Otake S, Koshima R, et al. Cancer gene therapy by IL-12 gene delivery using liposomal bubbles and tumoral ultrasound exposure. J Control Release. 2010;142(2):245-50. doi: 10.1016/j.jconrel.2009.10.027, PMID 19883708.
  10. Negishi Y, Hamano N, Tsunoda Y, Oda Y, Choijamts B, Endo-Takahashi Y, et al. AG73-modified bubble liposomes for targeted ultrasound imaging of tumor neovasculature. Biomaterials. 2013;34(2):501-7. doi: 10.1016/j.biomaterials.2012.09.056, PMID 23088840.
  11. Liu J, Ma H, Wei T, Liang XJ. CO2 gas induced drug release from pH-sensitive liposome to circumvent doxorubicin resistant cells. Chem Commun (Camb). 2012;48(40):4869-71. doi: 10.1039/c2cc31697h, PMID 22498879.
  12. Karanth H, Murthy RS. pH-sensitive liposomes—principle and application in cancer therapy. J Pharm Pharmacol. 2007;59(4):469-83. doi: 10.1211/jpp.59.4.0001, PMID 17430630.
  13. Gao ZG, Lee DH, Kim DI, Bae YH. Doxorubicin loaded pH-sensitive micelle targeting acidic extracellular pH of human ovarian A2780 tumor in mice. J Drug Target. 2005;13(7):391-7. doi: 10.1080/10611860500376741, PMID 16308207.
  14. Mo R, Sun Q, Li N, Zhang C. Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids. Biomaterials. 2013;34(11):2773-86. doi: 10.1016/j.biomaterials.2013.01.030, PMID 23352118.
  15. Banerjee S, Sen K, Pal TK, Guha SK. Poly(styrene-co-maleic acid)-based pH-sensitive liposomes mediate cytosolic delivery of drugs for enhanced cancer chemotherapy. Int J Pharm. 2012;436(1-2):786-97. doi: 10.1016/j.ijpharm.2012.07.059, PMID 22884831.
  16. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991-1003. doi: 10.1038/nmat3776, PMID 24150417.
  17. Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target. 2008;16(2):108-23. doi: 10.1080/10611860701794353, PMID 18274932.
  18. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1-2):113-42. doi: 10.1016/j.ijpharm.2009.10.018, PMID 19825408.
  19. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615-27. doi: 10.1038/nrd2591, PMID 20616808.
  20. Pridgen EM, Langer R, Farokhzad OC. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond). 2007;2(5):669-80. doi: 10.2217/17435889.2.5.669, PMID 17976029.
  21. Stinchcombe TE. Nanoparticle albumin-bound paclitaxel: a novel Cremphor-EL-free formulation of paclitaxel. Nanomedicine (Lond). 2007;2(4):415-23. doi: 10.2217/17435889.2.4.415, PMID 17716129.
  22. Dosio F, Arpicco S, Brusa P, Stella B, Cattel L. Poly(ethylene glycol)-human serum albumin-paclitaxel conjugates: preparation, characterization and pharmacokinetics. J Control Release. 2001;76(1-2):107-17. doi: 10.1016/S0168-3659(01)00420-5, PMID 11532317.
  23. Schluep T, Hwang J, Cheng J, Heidel JD, Bartlett DW, Hollister B, et al. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin Cancer Res. 2006;12(5):1606-14. doi: 10.1158/1078-0432.CCR-05-1566, PMID 16533788.
  24. Gaur S, Chen L, Yen T, Wang Y, Zhou B, Davis M, et al. Preclinical study of the cyclodextrin-polymer conjugate of camptothecin CRLX101 for the treatment of gastric cancer. Nanomedicine. 2012;8(5):721-30. doi: 10.1016/j.nano.2011.09.007, PMID 22033079.
  25. Ding HM, Ma YQ. Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Sci Rep. 2013;3:2804. doi: 10.1038/srep02804, PMID 24076598.
  26. Vivek R, Nipun Babu V, Thangam R, Subramanian KS, Kannan S. pH-responsive drug delivery of chitosan nanoparticles as tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf B Biointerfaces. 2013;111:117-23. doi: 10.1016/j.colsurfb.2013.05.018, PMID 23787278.
  27. Kemp MM, Linhardt RJ. Heparin-based nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(1):77-87. doi: 10.1002/wnan.68, PMID 20049832.
  28. Wang Y, Xin D, Liu K, Zhu M, Xiang J. Heparin-paclitaxel conjugates as drug delivery system: synthesis, self-assembly property, drug release, and antitumor activity. Bioconjug Chem. 2009;20(12):2214-21. doi: 10.1021/bc8003809, PMID 19950889.
  29. Wang Y, Wang Y, Xiang J, Yao K. Target-specific cellular uptake of Taxol-loaded heparin-PEG-folate nanoparticles. Biomacromolecules. 2010;11(12):3531-8. doi: 10.1021/bm101013s, PMID 21086982.
  30. Tan Q, Tang H, Hu J, Hu Y, Zhou X, Tao Y, et al. Controlled release of chitosan/heparin nanoparticle-delivered VEGF enhances regeneration of decellularized tissue-engineered scaffolds. Int J Nanomedicine. 2011;6:929-42. doi: 10.2147/IJN.S18753, PMID 21720505.
  31. Kemp MM, Kumar A, Mousa S, Dyskin E, Yalcin M, Ajayan P, et al. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology. 2009;20(45):455104. doi: 10.1088/0957-4484/20/45/455104, PMID 19822927.
  32. Yuk SH, Oh KS, Cho SH, Lee BS, Kim SY, Kwak BK, et al. Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging. Biomacromolecules. 2011;12(6):2335-43. doi: 10.1021/bm200413a, PMID 21506550.
  33. Li L, Huh KM, Lee Y, Kim SY. Biofunctional self-assembled nanoparticles of folate–PEG–heparin/PBLA copolymers for targeted delivery of doxorubicin. J Mater Chem. 2011;21(39):15288-97. doi: 10.1039/c1jm11944c.
  34. Li L, Huh KM, Lee YK, Kim SY. Design of a multifunctional heparin-based nanoparticle system for anticancer drug delivery. Macromol Res. 2010;18(2):153-61. doi: 10.1007/s13233-009-0134-8.
  35. She W, Li N, Luo K, Guo C, Wang G, Geng Y, et al. Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials. 2013;34(9):2252-64. doi: 10.1016/j.biomaterials.2012.12.017, PMID 23298778.
  36. Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond). 2010;5(4):523-8. doi: 10.2217/nnm.10.23, PMID 20528447.
  37. Chen Y, Lian G, Liao C, Wang W, Zeng L, Qian C et al. Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo. J Gastroenterol. 2013;48(7):809-21. doi: 10.1007/s00535-012-0713-x, PMID 23179610.
  38. Shen Y, Tang H, Zhan Y, Van Kirk EA, Murdoch WJ. Degradable poly(beta-amino ester) nanoparticles for cancer cytoplasmic drug delivery. Nanomedicine. 2009;5(2):192-201. doi: 10.1016/j.nano.2008.09.003, PMID 19223244.
  39. Kaul G, Amiji M. Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target. 2004;12(9-10):585-91. doi: 10.1080/10611860400013451, PMID 15621684.
  40. Van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res. 2007;24(8):1405-14. doi: 10.1007/s11095-007-9284-6, PMID 17393074.
  41. Choi KY, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, et al. Pegylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials. 2011;32(7):1880-9. doi: 10.1016/j.biomaterials.2010.11.010, PMID 21159377.
  42. Dubey N, Varshney R, Shukla J, Ganeshpurkar A, Hazari PP, Bandopadhaya GP, et al. Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Deliv. 2012;19(3):132-42. doi: 10.3109/10717544.2012.657718, PMID 22428685.
  43. Kawano K, Maitani Y. Effects of polyethylene glycol spacer length and ligand density on folate receptor targeting of liposomal doxorubicin in vitro. J Drug Deliv. 2011;2011:160967. doi: 10.1155/2011/160967, PMID 21490746.
  44. Chen J, Li S, Shen Q, He H, Zhang Y. Enhanced cellular uptake of folic acid-conjugated PLGA-PEG nanoparticles loaded with vincristine sulfate in human breast cancer. Drug Dev Ind Pharm. 2011;37(11):1339-46. doi: 10.3109/03639045.2011.575162, PMID 21524153.
  45. Dixit V, Van den Bossche J, Sherman DM, Thompson DH, Andres RP. Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug Chem. 2006;17(3):603-9. doi: 10.1021/bc050335b, PMID 16704197.
  46. Park JH, Gu L, Von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009 Apr;8(4):331-6. doi: 10.1038/nmat2398, PMID 19234444.
  47. Mundra V, Peng Y, Rana S, Natarajan A, Mahato RI. Micellar formulation of indocyanine green for phototherapy of melanoma. J Control Release. 2015 Dec 28;220(A):130-40. doi: 10.1016/j.jconrel.2015.10.029, PMID 26482083.
  48. Yu P, Yu H, Guo C, Cui Z, Chen X, Yin Q et al. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater. 2015 Mar 1;14:115-24. doi: 10.1016/j.actbio.2014.12.001, PMID 25498306.
  49. Lee ES, Kim JH, Sim T, Youn YS, Lee BJ, Oh YT et al. A feasibility study of a pH sensitive nanomedicine using doxorubicin loaded poly (aspartic acid-graft-imidazole)-block-poly (ethylene glycol) micelles. J Mater Chem B. 2014;2(9):1152-9. doi: 10.1039/c3tb21379j, PMID 32261351.
  50. Talelli M, Iman M, Varkouhi AK, Rijcken CJ, Schiffelers RM, Etrych T et al. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials. 2010 Oct 1;31(30):7797-804. doi: 10.1016/j.biomaterials.2010.07.005, PMID 20673684.
  51. Ding B, Zhang W, Wu X, Wang J, Xie C, Huang X et al. DR5 mAb-conjugated, DTIC-loaded immuno-nanoparticles effectively and specifically kill malignant melanoma cells in vivo. Oncotarget. 2016 Aug 8;7(35):57160-70. doi: 10.18632/oncotarget.11014, PMID 27494835.
  52. Saraf P, Li X, Wrischnik L, Jasti B. In vitro and in vivo efficacy of self-assembling RGD peptide amphiphiles for targeted delivery of paclitaxel. Pharm Res. 2015 Sep;32(9):3087-101. doi: 10.1007/s11095-015-1689-z, PMID 26063045.
  53. Cancer biology and medicine [Cited 2017 Aug 17]Available from:




[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions