International Journal of Pharma and Bio Sciences
    ISSN 0975-6299

Int J Pharm Bio Sci Volume 14 Issue 4, October - December, Pages:46-61

Smart Health Monitoring Using Wearable Device Sensors: A Brief Review

Dibyendu Mandal and Sandip Bag*

Wearable technology is an emerging and indispensable area for health parameter monitoring that is expanding all year round for appraising, investigating, and treating critically ill patients significantly. As wearable technology develops and the demand for real-time analytic monitoring increases, researchers are urged to create more wearable monitoring devices. The newest generation of personal portable electronics is being lauded as comprising wearable monitoring systems. As material science, integrated circuit fabrication, industrial innovation, fabrication of integrated circuits, and structural design develop, wearable healthcare devices will usher in a new era for illness detection, treatment, and prevention. Numerous industries employ wearables, including agriculture, sports, and hospital navigation systems. In this study, the conceptual evolution of wearable gadgets and their usefulness in the field of personalised healthcare are examined. This study aims to present a futuristic examination of wearable health sensors and systems for smart, reliable health monitoring and rehabilitation.

Keywords: Biomarkers, Bio-media, Healthcare monitoring, Physiological states, Wearable biosensor
Full HTML:


  1. Svalastog AL, Donev D, Jahren Kristoffersen NJ, Gajovi? S. Concepts and definitions of health and health-related values in the knowledge landscapes of the digital society. Croat Med J. 2017;58(6):431-5. doi: 10.3325/cmj.2017.58.431, PMID 29308835.
  2. Panagariya A. The Challenges and innovative solutions to rural health dilemma. Ann Neurosci. 2014;21(4):125-7. doi: 10.5214/ans.0972.7531.210401, PMID 25452670.
  3. Chen X, Orom H, Hay JL, Waters EA, Schofield E, Li Y, Kiviniemi MT. Differences in rural and urban health information access and use. The Journal of Rural Health. 2019 Jun;35(3):405-17.10.1111/jrh.12335, PMID 30444935.
  4. Stuckler D. Population causes and consequences of leading chronic diseases: A comparative analysis of prevailing explanations. Milbank Q. 2008;86(2):273-326. doi: 10.1111/j.1468-0009.2008.00522.x, PMID 18522614.
  5. Pimentel D, Cooperstein S, Randell H, Filiberto D, Sorrentino S, Kaye B, Nicklin C, Yagi J, Brian J, O’hern J, Habas A. Ecology of increasing diseases: population growth and environmental degradation. Human Ecology. 2007 Dec;35:653-68.10.1007/s10745-007-9128-3, PMID 32214603.
  6. Lalbakhsh A, Simorangkir RBVB, NimaBayat-Makou AA, Kishk KaruP. Esselle (2022): advancements and artificial intelligence approaches in antennas for environmental sensing. Artif Intell Data Sci Environ Sens. 2022:19-38.
  7. Javaid M, Khan IH. Internet of Things (IoT) enabled healthcare helps to take the challenges of COVID-19 Pandemic. J Oral Biol Craniofac Res. 2021;11(2):209-14. doi: 10.1016/j.jobcr.2021.01.015, PMID 33665069.
  8. Kelly JT, Campbell KL, Gong E, Scuffham P. The Internet of things: impact and implications for health care delivery. J Med Internet Res. 2020;22(11):e20135. doi: 10.2196/20135, PMID 33170132.
  9. Abdulmalek S, Nasir A, Jabbar WA, Almuhaya MAM, Bairagi AK, Khan MA et al. IoT-based healthcare-monitoring system towards improving quality of life: a review. Healthcare (Basel). 2022 October 11;10(10):1993. doi: 10.3390/healthcare10101993, PMID 36292441.
  10. Guk K, Han G, Lim J, Jeong K, Kang T, Lim EK et al. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials (Basel). 2019;9(6):813. doi: 10.3390/nano9060813, PMID 31146479.
  11. Mamdiwar SD, R A, Shakruwala Z, Chadha U, Srinivasan K, Chang CY. Recent advances on IoT-assisted wearable sensor systems for healthcare monitoring. Biosensors. 2021;11(10):372. doi: 10.3390/bios11100372, PMID 34677328.
  12. Guk K, Han G, Lim J, Jeong K, Kang T, Lim EK et al. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials (Basel). 2019 May 29;9(6):813. doi: 10.3390/nano9060813, PMID 31146479, PMCID PMC6631918.
  13. Wu M, Luo J. Wearable technology applications in healthcare: A literature review. Online J Nurs Inform (OJNI). 2019;23(3).
  14. Choi J, Bandodkar AJ, Reeder JT, Ray TR, Turnquist A, Kim SB et al. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature. ACS Sens. 2019;4(2):379-88. doi: 10.1021/acssensors.8b01218, PMID 30707572.
  15. Kim J, Imani S, de Araujo WR, Warchall J, Valdés-Ramírez G, Paixão TR et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron. 2015;74:1061-8. doi: 10.1016/j.bios.2015.07.039, PMID 26276541.
  16. Li X, Zhao C, Liu X. A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsyst Nanoeng. 2015;1:1-7.
  17. Baig MM, Gholamhosseini H. Smart health monitoring systems: an overview of design and modeling. J Med Syst. 2013;37(2):9898. doi: 10.1007/s10916-012-9898-z, PMID 23321968.
  18. Pantelopoulos A, Bourbakis NG. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst Man Cybern C (Applications and Reviews) 40(1):1–12. 2010;40(1):1-12. doi: 10.1109/TSMCC.2009.2032660.
  19. Kim J, Campbell AS, de Ávila BE, Wang J. Wearable biosensors for healthcare monitoring. Nat Biotechnol. 2019;37(4):389-406. doi: 10.1038/s41587-019-0045-y, PMID 30804534.
  20. Park S, Chung K, Jayaraman S 2014. Wearables: fundamentals, advancements, and a road map for the future. Wearable sensors. Academic Press, an imprint of Elsevier; 2014: 1-23.
  21. Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012;9:21. doi: 10.1186/1743-0003-9-21, PMID 22520559.
  22. Sharma A, Badea M, Tiwari S, Marty JL. Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring. Molecules. 2021;26(3):748. doi: 10.3390/molecules26030748, PMID 33535493.
  23. Dias D, Paulo Silva Cunha JPS. Wearable health devices – vital sign monitoring, systems and technologies. Sensors (Basel). 2018;18(8):2414. doi: 10.3390/s18082414, PMID 30044415.
  24. Ometov A, Shubina V, Klus L, Skibi?ska J, Saafi S, Pascacio P et al. A survey on wearable technology: history, state-of-the-art and current challenges. Comput Netw. 2021;193:108074. doi: 10.1016/j.comnet.2021.108074.
  25. Iqbal SMA, Mahgoub I, Du E, Leavitt MA, Asghar W. Advances in healthcare wearable devices. npj Flex Electron. 2021;5(1):9. doi: 10.1038/s41528-021-00107-x.
  26. Rodrigues JJPC, De Rezende Segundo DB, Junqueira HA, Sabino MH, Prince RM, Al-Muhtadi J et al. Enabling technologies for the Internet of health things. IEEE Access. 2018;6:13129-41. doi: 10.1109/ACCESS.2017.2789329.
  27. Vijayan V, Connolly JP, Condell J, McKelvey N, Gardiner P. Review of wearable devices and data collection considerations for connected health. Sensors (Basel). 2021;21(16):5589. doi: 10.3390/s21165589, PMID 34451032.
  28. Banaee H, Ahmed MU, Loutfi A. Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors (Basel). 2013;13(12):17472-500. doi: 10.3390/s131217472, PMID 24351646.
  29. Domb M. Wearable devices and their implementation in various domains. Vol. 2019. Intechopen; 2019. p. 66880.
  30. Woods JA, Hutchinson NT, Powers SK, Roberts WO, Gomez-Cabrera MC, Radak Z et al. The COVID-19 pandemic and physical activity. Sports Med Health Sci. 2020;2(2):55-64. doi: 10.1016/j.smhs.2020.05.006, PMID 34189484.
  31. Kaur H, Singh T, Arya YK, Mittal S. Physical fitness and exercise during the COVID-19 pandemic: A qualitative enquiry. Front Psychol. 2020;11:590172. doi: 10.3389/fpsyg.2020.590172, PMID 33250827.
  32. Dinh-Le C, Chuang R, Chokshi S, Mann D. Wearable health technology and electronic health record integration: scoping review and future directions. JMIR mHealth uHealth. 2019;7(9):e12861. doi: 10.2196/12861, PMID 31512582.
  33. Haghi M, Thurow K, Stoll R. Wearable devices in medical Internet of things: scientific research and commercially available devices. Healthc Inform Res. 2017;23(1):4-15. doi: 10.4258/hir.2017.23.1.4, PMID 28261526.
  34. Lu TC, Fu CM, Ma MHM, Fang CC, Turner AM. Healthcare applications of smart watches: A systematic review. Appl Clin Inform. 2016;7(3):850-69. doi: 10.4338/ACI-2016-03-R-0042, PMID 27623763.
  35. Siepmann C, Kowalczuk P. Understanding continued smartwatch usage: the role of emotional as well as health and fitness factors. Electron Markets. 2021;31(4):795-809. doi: 10.1007/s12525-021-00458-3.
  36. Bayoumy K, Gaber M, Elshafeey A, Mhaimeed O, Dineen EH, Marvel FA et al. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol. 2021;18(8):581-99. doi: 10.1038/s41569-021-00522-7, PMID 33664502.
  37. de Arriba-Pérez F, Caeiro-Rodríguez M, Santos-Gago JM. Collection and processing of data from wrist wearable devices in heterogeneous and multiple-user scenarios. Sensors (Basel). 2016;16(9):1538. doi: 10.3390/s16091538, PMID 27657081.
  38. Dr?gulinescu A, Dr?gulinescu AM, Zinc? G, Bucur D, Feie? V, Neagu DM. Smart socks and in-shoe systems: state-of-the-art for two popular technologies for foot Motion Analysis, sports, and medical applications. Sensors (Basel). 2020;20(15):4316. doi: 10.3390/s20154316, PMID 32748872.
  39. West BA, Bhat G, Stevens J, Bergen G. Assistive device use and mobility-related factors among adults aged ≥ 65 years. J Saf Res. 2015;55:147-50. doi: 10.1016/j.jsr.2015.08.010, PMID 26683557.
  40. Majumder S, Mondal T, Deen MJ. Wearable sensors for remote health monitoring. Sensors (Basel). 2017;17(1):130. doi: 10.3390/s17010130, PMID 28085085.
  41. Tamura T. Current progress of photoplethysmography and SpO2 for health monitoring. Biomed Eng Lett. 2019;9(1):21-36. doi: 10.1007/s13534-019-00097-w, PMID 30956878.
  42. Castaneda D, Esparza A, Ghamari M, Soltanpur C, Nazeran H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int J Biosens Bioelectron. 2018;4(4):195-202. doi: 10.15406/ijbsbe.2018.04.00125, PMID 30906922.
  43. Khundaqji H, Hing W, Furness J, Climstein M. Smart shirts for monitoring physiological parameters: scoping review. JMIR mHealth uHealth. 2020;8(5):e18092. doi: 10.2196/18092, PMID 32348279.
  44. Muhammad Sayem AS, Hon Teay S, Shahariar H, Fink PL, Albarbar A. Review on smart electro-clothing systems (SeCSs). Sensors (Basel). 2020;20(3):587. doi: 10.3390/s20030587, PMID 31973123.
  45. Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller AB et al. Born Too Soon: the global epidemiology of 15 million preterm births. Reprod Health. 2013;10;Suppl 1:S2. doi: 10.1186/1742-4755-10-S1-S2, PMID 24625129.
  46. Kinney MV, Lawn JE, Howson CP, Belizan J. 15 million preterm births annually: what has changed this year? Reprod Health. 2012;9:28. doi: 10.1186/1742-4755-9-28, PMID 23148557.
  47. Wei C, Sibrecht B, Sidarto BO, Loe F 2010. Intelligent Design for Neonatal Monitoring with Wearable Sensors. 10.5772/7031.
  48. Dore H, Aviles-Espinosa R, Luo Z, Anton O, Rabe H, Rendon-Morales E (20210. Characterisation of textile embedded electrodes for use in a neonatal smart mattress electrocardiography system. Sensors (Basel). 2021;21(3):999. doi: 10.3390/s21030999, PMID 33540669.
  49. Garcia-Ceja E, Riegler M, Nordgreen T, Jakobsen P, Oedegaard KJ, Tørresen J. Mental health monitoring with multimodal sensing and machine learning: A survey. Pervasive Mob Comput. 2018;51:1-26. doi: 10.1016/j.pmcj.2018.09.003.
  50. Chancellor S, De Choudhury M. Methods in predictive techniques for mental health status on social media: a critical review. npj Digit Med. 2020;3:43. doi: 10.1038/s41746-020-0233-7, PMID 32219184.
  51. Ravishankar P, Daily A. Tears as the next diagnostic biofluid: A comparative study between ocular fluid and blood. Appl Sci. 2022;12(6):2884. doi: 10.3390/app12062884.
  52. Singh SU, Chatterjee S, Lone SA, Ho HH, Kaswan K, Peringeth K et al. Advanced wearable biosensors for the detection of body fluids and exhaled breath by graphene. Mikrochim Acta. 2022;189(6):236. doi: 10.1007/s00604-022-05317-2, PMID 35633385.
  53. Bennet D, Khorsandian Y, Pelusi J, Mirabella A, Pirrotte P, Zenhausern F. Molecular and physical technologies for monitoring fluid and electrolyte imbalance: A focus on cancer population. Clin Transl Med. 2021;11(6):e461. doi: 10.1002/ctm2.461, PMID 34185420.
  54. Yang B, Jiang X, Fang X, Kong J. Wearable chem-biosensing devices: from basic research to commercial market. Lab Chip. 2021;21(22):4285-310. doi: 10.1039/d1lc00438g, PMID 34672310.
  55. Elsherif M, Moreddu R, Alam F, Salih AE, Ahmed I, Butt H. Wearable smart contact lenses for continual glucose monitoring: a review. Front Med (Lausanne). 2022;9:858784. doi: 10.3389/fmed.2022.858784, PMID 35445050.
  56. Tseng RC, Chen CC, Hsu SM, Chuang HS. Contact-lens biosensors. Sensors (Basel). 2018;18(8):2651. doi: 10.3390/s18082651, PMID 30104496.
  57. Farandos NM, Yetisen AK, Monteiro MJ, Lowe CR, Yun SH. Contact lens sensors in ocular diagnostics. Adv Healthc Mater. 2014;4(6):792-810.
  58. Malamud D, Rodriguez-Chavez IR. Saliva as a diagnostic fluid. Dent Clin North Am. 2011;55(1):159-78. doi: 10.1016/j.cden.2010.08.004, PMID 21094724.
  59. Lee YH, Wong DT. Saliva: an emerging biofluid for early detection of diseases. Am J Dent. 2009;22(4):241-8. PMID 19824562.
  60. Shakeeb N, Varkey P, Ajit A. Human saliva as a diagnostic specimen for early detection of inflammatory biomarkers by real-time RT-PCR. Inflammation. 2021;44(5):1713-23. doi: 10.1007/s10753-021-01484-1, PMID 34031776.
  61. Papagerakis P, Zheng L, Kim D, Said R, Ehlert AA, Chung KKM et al. Saliva and gingival crevicular fluid (GCF) collection for biomarker screening. Methods Mol Biol. 2019;1922:549-62. doi: 10.1007/978-1-4939-9012-2_41, PMID 30838599.
  62. Barros SP, Williams R, Offenbacher S, Morelli T. Gingival crevicular as a source of biomarkers for periodontitis. Periodontol 2000. 2016;70(1):53-64. doi: 10.1111/prd.12107, PMID 26662482.
  63. Hong W, Lee WG. Wearable sensors for continuous oral cavity and dietary monitoring toward personalized healthcare and digital medicine. Analyst. 2020;145:7796-808.
  64. Li Y, Tang H, Liu Y, Qiao Y, Xia H, Zhou J. Oral wearable sensors: health management based on the oral cavity. Biosens Bioelectron. 2022;10:100135. doi: 10.1016/j.biosx.2022.100135.
  65. Lakshmi KR, Nelakurthi H, Kumar AS, Rudraraju A. Oral fluid-based biosensors: A novel method for rapid and noninvasive diagnosis. Ind J Dent Sci. 2017;9(1):60-6. doi: 10.4103/IJDS.IJDS_6_17.
  66. Ajami S, Teimouri F. Features and application of wearable biosensors in medical care. J Res Med Sci. 2015;20(12):1208-15. doi: 10.4103/1735-1995.172991, PMID 26958058.
  67. Seshadri DR, Li RT, Voos JE, Rowbottom JR, Alfes CM, Zorman CA et al. Wearable sensors for monitoring the internal and external workload of the athlete. npj Digit Med. 2019;2:71. doi: 10.1038/s41746-019-0149-2, PMID 31372506.
  68. Lu L, Zhang J, Xie Y, Gao F, Xu S, Wu X et al. Wearable health devices in health care: narrative systematic review. JMIR mHealth uHealth. 2020;8(11):e18907. doi: 10.2196/18907, PMID 33164904.
  69. Li Y, Zheng L, Wang X. Flexible and wearable healthcare sensors for visual reality health-monitoring. Virtual Real Intell Hardware. 2019;1(4):411-27. doi: 10.1016/j.vrih.2019.08.001.
  70. Wang XW, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small. 2017;13(25):1602790. doi: 10.1002/smll.201602790, PMID 28306196.
  71. Zeng K, Guo Q, Gao S, Wu DM, Fan HJ, Yang G. Studies on organosoluble polyimides based on a series of new asymmetric and symmetric dianhydrides: structure/solubility and thermal property relationships. Macromol Res. 2012;20(1):10-20. doi: 10.1007/s13233-012-0007-4.
  72. Sekitani T, Zschieschang U, Klauk H, Someya T. Flexible organic transistors and circuits with extreme bending stability. Nat Mater. 2010;9(12):1015-22. doi: 10.1038/nmat2896, PMID 21057499.
  73. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature. 2004;432(7016):488-92. doi: 10.1038/nature03090, PMID 15565150.
  74. Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T et al. An ultra-lightweight design for imperceptible plastic electronics. Nature. 2013;499(7459):458-63. doi: 10.1038/nature12314, PMID 23887430.
  75. Lipomi DJ, Vosgueritchian M, Tee BCK, Hellstrom SL, Lee JA, Fox CH et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol. 2011;6(12):788-92. doi: 10.1038/nnano.2011.184, PMID 22020121.
  76. Laukhina E, Pfattner R, Ferreras LR, Galli S, Mas-Torrent M, Masciocchi N et al. Ultrasensitive piezoresistive all-organic flexible thin films. Adv Mater. 2010;22(9):977-81. doi: 10.1002/adma.200902639, PMID 20217823.
  77. Gburek B, Wagner V. Influence of the semiconductor thickness on the charge carrier mobility in P3HT organic field effect transistors in top-gate architecture on flexible substrates. Org Electron. 2010;11(5):814-9. doi: 10.1016/j.orgel.2010.01.023.
  78. Harada S, Kanao K, Yamamoto Y, Arie T, Akita S, Takei K. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS Nano. 2014;8(12):12851-7. doi: 10.1021/nn506293y, PMID 25437513.
  79. Eom J, Jaisutti R, Lee H, Lee W, Heo JS, Lee JY et al. Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl Mater Interfaces. 2017;9(11):10190-7. doi: 10.1021/acsami.7b01771, PMID 28251848.
  80. Nasiri S, Khosravani MR. Progress and challenges in fabrication of wearable sensors for health monitoring. Sens Actuators A. 2020;312:112105. doi: 10.1016/j.sna.2020.112105.
  81. Yakut O, Solak S, Bolat ED. Measuring ECG signal using e-health sensor platform. In: Proceedings of the international conference on chemistry, biomedical and environment engineering, Antalya, Turkey pp; 2014. p. 65-9.
  82. Mathur N, Paul G, Irvine J, Abuhelala M, Buis A, Glesk I. A secure IoT-based healthcare system with body sensor networks. IEEE Access. 2016;4:7440-51. doi: 10.1109/ACCESS.2016.2622163.
  83. Greco L, Ritrovato P, Xhafa F. An edge-stream computing infrastructure for real-time analysis of wearable sensors data. Future Gener Comput Syst. 2019;93:515-28. doi: 10.1016/j.future.2018.10.058.
  84. Magaña-Espinoza PM, Aquino-Santos R, Cárdenas-Benítez N, Aguilar-Velasco J, Buenrostro-Segura C, Edwards-Block A et al. WiSPH: a wireless sensor network-based home care monitoring system. Sensors (Basel). 2014;14(4):7096-119. doi: 10.3390/s140407096, PMID 24759112.
  85. Lou Z, Chen S, Wang L, Shi R, Li L, Jiang K et al. Ultrasensitive and ultra flexible e-skins with dual functionalities for wearable electronics. Nano Energy. 2017;38:28-35. doi: 10.1016/j.nanoen.2017.05.024.
  86. Jin Y, Boon EP, Le LT, Lee W. Fabric-infused array of reduced grapheme oxide sensors for mapping of skin temperatures. Sens Actuators A. 2018;280:92-8. doi: 10.1016/j.sna.2018.06.043.
  87. Tang Z, Yao D, Hu S, Du D, Shao W, Tang B et al. Highly conductive, washable and super-hydrophobic wearable carbon nanotubes e-textile for vacuum pressure sensors. Sens Actuators A. 2020;303:111710. doi: 10.1016/j.sna.2019.111710.
  88. Kim S, Zhang X, Daugherty R, Lee E, Kunnen G, Allee DR et al. Design and implementation of electrostatic micro-actuators in ultrasonic frequency on a flexible substrate, PEN (polyethylenenaphthalate). Sens Actuators A. 2013;195:198-205. doi: 10.1016/j.sna.2012.10.010.
  89. Li X, Wu N, Rojanasakul Y, Liu Y. Selective stamp bonding of PDMS microfluidic devices to polymer substrates for biological applications. Sens Actuators A. 2013;193:186-92. doi: 10.1016/j.sna.2012.12.037.
  90. Oren S, Ceylan H, Dong L. Helical-shaped graphene tubular spring formed within microchannel for wearable strain sensor with wide dynamic range. IEEE Sens Lett. 2017;1(6):1-4. doi: 10.1109/LSENS.2017.2764046.
  91. Li S, Liu D, Tian N, Liang Y, Gao C, Wang S et al. High-performance temperature sensor based on silver nanowires. Mater Today Commun. 2019;20:100546. doi: 10.1016/j.mtcomm.2019.100546.
  92. Ahmed MF, Li Y, Zeng C. Stretchable and compressible piezoresistive sensors from auxetic foam and silver nanowire. Mater Chem Phys. 2019;229:167-73. doi: 10.1016/j.matchemphys.2019.03.015.
  93. Schnell B, Moder P, Ehm H, Konstantinov M, Ismail M. Challenges in smart health applications using wearable medical Internet-of-Things—a review. In: Proceedings of the sixth international congress on information and communication technology, London, UK; 2022. p. 283-96. doi: 10.1007/978-981-16-1781-2_27.
  94. Mukhopadhyay SC, Suryadevara NK, Nag A. Wearable sensors for healthcare: fabrication to application. Sensors (Basel). 2022;22(14):5137. doi: 10.3390/s22145137, PMID 35890817.
  95. Xiao Y, Pan Y. Emerging wireless LANs, wireless PANs, and wireless MANs: IEEE 802.11, IEEE. 2009;802(15), 802.16 Wireless Standard Family.
  96. Ometov A, Shubina V, Klus L, Skibi?ska J, Saafi S, Pascacio P, et al. A survey on wearable technology: history, state-of-the-art and current challenges. Comput Netw. 2021;193:108074. doi: 10.1016/j.comnet.2021.108074.
  97. Salayma M, Al-Dubai A, Romdhani I, Nasser Y. Wireless body area network (WBAN): A survey on reliability, fault tolerance, and technologies coexistence. ACM Comput Surv. 2017;50:3041956. doi: 10.1145/3041956.
  98. Bhatti DS, Saleem S, Imran A, Iqbal Z, Alzahrani A, Kim H et al. A survey on wireless wearable body area networks: A perspective of technology and economy. Sensors (Basel). 2022;22(20):7722. doi: 10.3390/s22207722, PMID 36298073, PMCID PMC9607184.
  99. Buckiewicz B. Medical body area networks: rules and regulations; 2019[accessed on Jun 15, 2023]. Available from:
[Download PDF]
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy
Pharmaceutical Fields
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmaceutics
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Novel drug delivery system
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Nanotechnology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacology
Welcome to IJPBS,Pharmaceutics, Novel, drug, delivery, system, Nanotechnology, Pharmacology, Pharmacognosy Pharmacognosy
© Copyright 2009-2015 IJPBS, India. All rights reserved. Specialized online journals by ubijournal. Website by Ubitech Solutions
         Home I Contact I Terms & Conditions